European Symposium on Research in Computer Security

Computer Security -- ESORICS 2015 pp 40-60

Enabling Privacy-Assured Similarity Retrieval over Millions of Encrypted Records

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9327)

Abstract

Searchable symmetric encryption (SSE) has been studied extensively for its full potential in enabling exact-match queries on encrypted records. Yet, situations for similarity queries remain to be fully explored. In this paper, we design privacy-assured similarity search schemes over millions of encrypted high-dimensional records. Our design employs locality-sensitive hashing (LSH) and SSE, where the LSH hash values of records are treated as keywords fed into the framework of SSE. As direct combination of the two does not facilitate a scalable solution for large datasets, we then leverage a set of advanced hash-based algorithms including multiple-choice hashing, open addressing, and cuckoo hashing, and craft a high performance encrypted index from the ground up. It is not only space efficient, but supports secure and sufficiently accurate similarity search with constant time. Our designs are proved to be secure against adaptive adversaries. The experiment on 10 million encrypted records demonstrates that our designs function in a practical manner.

Keywords

Cloud security Encrypted storage Similarity retrieval 

References

  1. 1.
    Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM 51, 117–122 (2008)CrossRefGoogle Scholar
  2. 2.
    Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner, M.: Dynamic searchable encryption in very large databases: Data structures and implementation. In: Proceedings of NDSS (2014)Google Scholar
  3. 3.
    Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  5. 5.
    Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: Proceedings of ACM CCS (2006)Google Scholar
  7. 7.
    Goh, E.J.: Secure indexes. Cryptology ePrint Archive (2003)Google Scholar
  8. 8.
    Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications, vol. 2. Cambridge University Press, New York (2009) MATHGoogle Scholar
  9. 9.
    Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates. In: Proceedings of ACM CCS (2014)Google Scholar
  10. 10.
    Hua, Y., Xiao, B., Liu, X.: Nest: Locality-aware approximate query service for cloud computing. In: Proceedings of IEEE INFOCOM (2013)Google Scholar
  11. 11.
    Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric private information retrieval. In: Proceedings of ACM CCS (2013)Google Scholar
  12. 12.
    Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryption. In: Proceedings of Financial Cryptography (2013)Google Scholar
  13. 13.
    Kamara, S., Papamanthou, C., Roeder, T.: CS2: A searchable cryptographic cloud storage system. Microsoft Research, Technical report MSR-TR-2011-58 (2011)Google Scholar
  14. 14.
    Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: Proceedings of ACM CCS (2012)Google Scholar
  15. 15.
    Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted data. In: Proceedings of IEEE ICDE (2012)Google Scholar
  16. 16.
    Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe lsh: Efficient indexing for high-dimensional similarity search. In: Proceedings of VLDB (2007)Google Scholar
  17. 17.
    Naveed, M., Prabhakaran, M., Gunter, C.: Dynamic searchable encryption via blind storage. In: Proceedings of IEEE S&P (2014)Google Scholar
  18. 18.
    Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Panigrahy, R.: Entropy based nearest neighbor search in high dimensions. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA) (2006)Google Scholar
  20. 20.
    Rane, S., Boufounos, P.T.: Privacy-preserving nearest neighbor methods: comparing signals without revealing them. IEEE Sig. Process. Mag. 30(2), 18–28 (2013)CrossRefGoogle Scholar
  21. 21.
    Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceedings of IEEE S&P (2000)Google Scholar
  22. 22.
    Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable symmetric encryption with small leakage. In: Proceedings of NDSS (2014)Google Scholar
  23. 23.
    Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in high dimensional nearest neighbor search. In: Proceedings of ACM SIGMOD (2009)Google Scholar
  24. 24.
    van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM 2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xingliang Yuan
    • 1
  • Helei Cui
    • 1
  • Xinyu Wang
    • 1
  • Cong Wang
    • 1
  1. 1.City University of Hong KongKowloonHong Kong

Personalised recommendations