European Symposium on Research in Computer Security

Computer Security -- ESORICS 2015 pp 252-269 | Cite as

Attribute Based Broadcast Encryption with Short Ciphertext and Decryption Key

  • Tran Viet Xuan Phuong
  • Guomin Yang
  • Willy Susilo
  • Xiaofeng Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9327)

Abstract

Attribute Based Broadcast Encryption (ABBE) is a combination of Attribute Based Encryption (ABE) and Broadcast Encryption (BE). It allows a broadcaster (or encrypter) to broadcast an encrypted message that can only be decrypted by the receivers who are within a predefined user set and satisfy the access policy specified by the broadcaster. Compared with normal ABE, ABBE allows direct revocation, which is important in many real-time broadcasting applications such as Pay TV. In this paper, we propose two novel ABBE schemes that have distinguishing features: the first scheme is key-policy based and has short ciphertext and constant size decryption key; and the second one is ciphertext-policy based and has constant size ciphertext and short decryption key. Both of our schemes allow access policies to be expressed using AND-gate with positive, negative, and wildcard symbols, and are proven secure under the Decision n-BDHE assumption without random oracles.

Keywords

Attribute based encryption Broadcast encryption AND-gate Wildcard 

References

  1. 1.
    Berkovits, S.: How to broadcast a secret. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991) Google Scholar
  2. 2.
    Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994) Google Scholar
  3. 3.
    Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 41. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  4. 4.
    Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In: ACM CCS, pp. 211–220 (2006)Google Scholar
  7. 7.
    Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broadcast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 39–59. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  8. 8.
    Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  9. 9.
    Phan, D.-H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive CCA broadcast encryption with constant-size secret keys and ciphertexts. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 308–321. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  11. 11.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS, pp. 89–98 (2006)Google Scholar
  12. 12.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE S&P, pp. 321–334 (2007)Google Scholar
  13. 13.
    Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: ACM CCS, pp. 456–465 (2007)Google Scholar
  14. 14.
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  15. 15.
    Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  16. 16.
    Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  17. 17.
    Junod, P., Karlov, A.: An efficient public-key attribute-based broadcast encryption scheme allowing arbitrary access policies. In: ACM Workshop on Digital Rights Management, pp. 13–24 (2010)Google Scholar
  18. 18.
    Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  19. 19.
    Lubicz, D., Sirvent, T.: Attribute-based broadcast encryption scheme made efficient. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 325–342. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  20. 20.
    Sahai, A., Waters, B.: Revocation systems with very small private keys. IACR Cryptology ePrint Archive 2008/309Google Scholar
  21. 21.
    Sedghi, S., van Liesdonk, P., Nikova, S., Hartel, P., Jonker, W.: Searching keywords with wildcards on encrypted data. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 138–153. Springer, Heidelberg (2010) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tran Viet Xuan Phuong
    • 1
  • Guomin Yang
    • 1
  • Willy Susilo
    • 1
  • Xiaofeng Chen
    • 2
  1. 1.Centre for Computer and Information Security Research, School of Computing and Information TechnologyUniversity of WollongongWollongongAustralia
  2. 2.State Key Laboratory of Integrated Service NetworksXidian UniversityXi’anPeople’s Republic of China

Personalised recommendations