Interferometric Surface Mapping of Rapidly Rotating Stars: Application to the Be star Achernar

  • Armando Domiciano de SouzaEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 914)


Rotation is one of the fundamental parameters that governs the physical structure and evolution of stars. Massive stars are those presenting the highest rotation velocities and thus those for which the consequences of rotation are the strongest. On the stellar photosphere fast-rotation induces (1) a geometrical flattening and (2) a non-uniform distribution of flux/effective temperature (gravity darkening effect). A detailed mapping of these effects on the stellar photosphere, including large scale surface velocity fields, is nowadays possible thanks to modern techniques of optical/infrared long-baseline interferometry (OLBI). In this paper we focus on the measurement of gravity darkening from OLBI, while the determination of flattening is detailed by Kervella (this volume). In addition, we also show that, for fast-rotators, the combination of OLBI and spectroscopy (spectro-interferometry) allows to go beyond the spatial resolution limit of interferometers in order to measure angular sizes of stars, otherwise not measurable by classical OLBI techniques. The results presented here are based on ESO-VLTI interferometric observations of the Be star Achernar.



I am grateful to the organizers of the Besançon school for their invitation to write this paper. PIONIER is funded by the Université Joseph Fourier (UJF), the Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), the Agence Nationale pour la Recherche (ANR-06-BLAN-0421 and ANR-10-BLAN-0505), and the Institut National des Science de l’Univers (INSU PNP and PNPS). The integrated optics beam combiner is the result of a collaboration between IPAG and CEA-LETI based on CNES R&T funding. This research has made use of the SIMBAD database, operated at the CDS, Strasbourg, France, of NASA Astrophysics Data System Abstract Service.2 We also have used the Jean-Marie Mariotti Center (JMMC) services OIFits Explorer,3 and SearchCal.4


  1. Born, M., & Wolf, E. (1999). Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (7th ed.). Cambridge University Press.CrossRefzbMATHGoogle Scholar
  2. Chelli, A., & Petrov, R. G. (2005). Model fitting and error analysis for differential interferometry. II. Application to rotating stars and binary systems. Astronomy & Astrophysics, Supplement, 109, 401.Google Scholar
  3. Domiciano de Souza, A., Hadjara, M., Vakili, F., Bendjoya, P., Millour, F., Abe, L., et al. (2012a). Beyond the diffraction limit of optical/IR interferometers. I. Angular diameter and rotation parameters of Achernar from differential phases. Astronomy & Astrophysics, 545, A130.Google Scholar
  4. Domiciano de Souza, A., Kervella, P., Jankov, S., Abe, L., Vakili, F., di Folco, E., et al., (2003). The spinning-top Be star Achernar from VLTI-VINCI. Astronomy & Astrophysics, 407, L47.ADSCrossRefGoogle Scholar
  5. Domiciano de Souza, A., Kervella, P., Moser Faes, D., Dalla Vedova, G., Mérand, A., Le Bouquin, J.-B., et al. (2014). The environment of the fast rotating star Achernar. III. Photospheric parameters revealed by the VLTI. Astronomy & Astrophysics, 569, A10.Google Scholar
  6. Domiciano de Souza, A., Vakili, F., Jankov, S., Janot-Pacheco, E., & Abe, L. (2002). Modelling rapid rotators for stellar interferometry. Astronomy & Astrophysics, 393, 345.ADSCrossRefGoogle Scholar
  7. Domiciano de Souza, A., Zorec, J., & Vakili, F. (2012b). CHARRON: Code for high angular resolution of rotating objects in nature. In S. Boissier, P. de Laverny, N. Nardetto, R. Samadi, D. Valls-Gabaud, & H. Wozniak (Eds.), Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (pp. 321–324).Google Scholar
  8. Espinosa Lara, F., & Rieutord, M. (2011). Gravity darkening in rotating stars. Astronomy & Astrophysics, 533, A43.ADSCrossRefzbMATHGoogle Scholar
  9. Foreman-Mackey, D., Hogg, D.W., Lang, D., & Goodman, J. (2013). emcee: The MCMC hammer. Publications of the Astronomical Society of the Pacific, 125, 306.Google Scholar
  10. Hadjara, M., Domiciano de Souza, A., Vakili, F., Jankov, S., Millour, F., Meilland, A., et al. (2014). Beyond the diffraction limit of optical/IR interferometers. II. Stellar parameters of rotating stars from differential phases. Astronomy & Astrophysics, 569, A45Google Scholar
  11. Haguenauer, P., Alonso, J., Bourget, P., Brillant, S., Gitton, P., Guisard, S., et al. (2010). The very large telescope Interferometer: 2010 edition. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (Vol. 7734).Google Scholar
  12. Kervella, P., & Domiciano de Souza, A. (2006). The polar wind of the fast rotating Be star Achernar. VINCI/VLTI interferometric observations of an elongated polar envelope. Astronomy & Astrophysics, 453, 1059.Google Scholar
  13. Le Bouquin, J.-B., Berger, J.-P., Lazareff, B., Zins, G., Haguenauer, P., Jocou, L., et al. (2011). PIONIER: A 4-telescope visitor instrument at VLTI. Astronomy & Astrophysics, 535, A67.CrossRefGoogle Scholar
  14. Markwardt, C. B. (2009). Non-linear least-squares fitting in IDL with MPFIT. In D. A. Bohlender, D. Durand, & P. Dowler (Eds.), Astronomical Society of the Pacific Conference Series (Vol. 411, pp. 251–254).Google Scholar
  15. Millour, F., Meilland, A., Chesneau, O., Stee, Ph., Kanaan, S., Petrov, R., et al. (2011). Imaging the spinning gas and dust in the disc around the supergiant A[e] star HD 62623. Astronomy & Astrophysics, 526, A107.ADSCrossRefGoogle Scholar
  16. Millour, F., Vannier, M., Petrov, R. G., Chesneau, O., Dessart, L., Stee, P., et al. (2006). Differential interferometry with the AMBER/VLTI instrument: Description, performances and illustration. In M. Carbillet, A. Ferrari, & C. Aime (Eds.), Astronomy with high contrast imaging III: Instrumental techniques, modeling and data processing. EAS Publications Series (Vol. 22, pp. 379–388). Cambridge: Cambridge University Press.Google Scholar
  17. Perryman, M. A. C., Lindegren, L., Kovalevsky, J., Hoeg, E., Bastian, U., Bernacca, P. L., et al. (1997). The HIPPARCOS catalogue. Astronomy & Astrophysics, 323, L49.ADSGoogle Scholar
  18. Petrov, R. G., Malbet, F., Weigelt, G., Antonelli, P., Beckmann, U., Bresson, Y., et al. (2007). AMBER, the near-infrared spectro-interferometric three-telescope VLTI instrument. Astronomy & Astrophysics, 464, 1.ADSCrossRefGoogle Scholar
  19. van Belle, G. T. (2012). Interferometric observations of rapidly rotating stars. Astronomy & Astrophysics, Reviews, 20, 51.ADSCrossRefGoogle Scholar
  20. van Leeuwen, F. (2007). Validation of the new Hipparcos reduction. Astronomy & Astrophysics, 474, 653.ADSCrossRefGoogle Scholar
  21. von Zeipel, H. (1924). The radiative equilibrium of a rotating system of gaseous masses. Monthly Notices of the Royal Astronomical Society, 84, 665.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratoire LagrangeUniversité Côte d’Azur, Observatoire de la Côte d’Azur, CNRSNice cedex 4France

Personalised recommendations