Research Conference on Metadata and Semantics Research

Metadata and Semantics Research pp 101-112 | Cite as

Discovering the Topical Evolution of the Digital Library Evaluation Community

  • Leonidas Papachristopoulos
  • Nikos Kleidis
  • Michalis Sfakakis
  • Giannis Tsakonas
  • Christos Papatheodorou
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 544)

Abstract

The successful management of textual information is a rising challenge for all the researchers’ communities, in order firstly to assess its current and previous statuses and secondly to enrich the level of their metadata description. The huge amount of unstructured data that is produced has consequently populated text mining techniques for its interpretation, selection and metadata enrichment opportunities that provides. Scientific production regarding Digital Libraries (DLs) evaluation has been grown in size and has broaden the scope of coverage as it consists a complex and multidimensional field. The current study proposes a probabilistic topic modeling implemented on a domain corpus from the JCDL, ECDL/TDPL and ICADL conferences proceedings in the period 2001-2013, aiming at the unveiling of its topics and subject temporal analysis, for exploiting and extracting semantic metadata from large corpora in an automatic way.

Keywords

Research trends discovery Digital library evaluation Topic modeling Metadata extraction Latent Dirichlet Allocation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delen, D., Crossland, M.D.: Seeding the survey and analysis of research literature with text mining. Expert Syst. Appl. 34, 1707–1720 (2008)CrossRefGoogle Scholar
  2. 2.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)MATHGoogle Scholar
  3. 3.
    Tsakonas, G., Mitrelis, A., Papachristopoulos, L., Papatheodorou, C.: An exploration of the digital library evaluation literature based on an ontological representation. J. Am. Soc. Inf. Sci. Technol. 64, 1914–1926 (2013)CrossRefGoogle Scholar
  4. 4.
    Afiontzi, E., Kazadeis, G., Papachristopoulos, L., Sfakakis, M., Tsakonas, G., Papatheodorou, C.: Charting the digital library evaluation domain with a semantically enhanced mining methodology. In: Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries, Indianapolis, IN, USA, pp. 125–134 (2013)Google Scholar
  5. 5.
    Noh, Y., Hagedorn, K., Newman, D.: Are learned topics more useful than subject headings. In: Proceedings of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries, pp. 411–412. ACM, New York (2011)Google Scholar
  6. 6.
    Newman, D., Noh, Y., Talley, E., Karimi, S., Baldwin, T.: Evaluating topic models for digital libraries. In: Proceedings of the 10th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 215–224. ACM Press (2010)Google Scholar
  7. 7.
    Newman, D., Hagedorn, K., Chemudugunta, C., Smyth, P.: Subject metadata enrichment using statistical topic models. In: Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 366–375. ACM, New York (2007)Google Scholar
  8. 8.
    Tuarob, S., Pouchard, L.C., Mitra, P., Giles, C.L.: A generalized topic modeling approach for automatic document annotation. Int. J. Digit. Libr. 16, 111–128 (2015)CrossRefGoogle Scholar
  9. 9.
    Newman, D., Karimi, S., Cavedon, L.: Using topic models to interpret MEDLINE’s medical subject headings. In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS (LNAI), vol. 5866, pp. 270–279. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Aletras, N., Stevenson, M., Clough, P.: Computing Similarity Between Items in a Digital Library of Cultural Heritage. J. Comput. Cult. Herit. 5, 16:1–16:19 (2013)Google Scholar
  11. 11.
    Aletras, N., Baldwin, T., Lau, J.H., Stevenson, M.: Representing topics labels for exploring digital libraries. In: ACM/IEEE Joint Conference on Digital Libraries (JCDL 2014) International Conference on Theory and Practice of Digital Libraries (TPDL 2014), London, September 8−12 (2014)Google Scholar
  12. 12.
    Bolelli, L., Ertekin, S., Zhou, D., Giles, C.L.: Finding topic trends in digital libraries. In: Proc. 2009 Jt. Int. Conf. Digit. Libr., JCDL 2009, p. 69 (2009)Google Scholar
  13. 13.
    Nguyen, S.H., Chowdhury, G.: Digital library research (1990-2010): a knowledge map of core topics and subtopics. In: Airong, J. (ed.) ICADL 2011. LNCS, vol. 7008, pp. 368–372. Springer, Heidelberg (2011)Google Scholar
  14. 14.
    Pomerantz, J., Wildemuth, B.M., Yang, S., Fox, E.A.: Curriculum development for digital libraries. In: Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 175–184. ACM, New York (2006)Google Scholar
  15. 15.
    Tsakonas, G., Mitrelis, A., Papachristopoulos, L., Papatheodorou C.: An exploration of the research trends in the digital library evaluation domain. In: 12th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 347–348. ACM, New York (2012)Google Scholar
  16. 16.
    Fox, C.: A Stop List for General Text. SIGIR Forum 24, 19–21 (1989)CrossRefGoogle Scholar
  17. 17.
    Mimno, D.: jsLDA: An implementation of latent Dirichlet allocation in javascript. https://github.com/mimno/jsLDA
  18. 18.
    Moro, S., Cortez, P., Rita, P.: Business intelligence in banking: A literature analysis from 2002 to 2013 using text mining and latent Dirichlet allocation. Expert Syst. Appl. 42, 1314–1324 (2015)CrossRefGoogle Scholar
  19. 19.
    Marshall, C.C., Ruotolo, C.: Reading-in-the-small: a study of reading on small form factor devices. In: Proceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 56–64. ACM Press, New York (2002)Google Scholar
  20. 20.
    Fuhr, N., Tsakonas, G., Aalberg, T., Agosti, M., Hansen, P., Kapidakis, S., Klas, C.-P., Kovaks, L., Landoni, M., Micsik, A., Papatheodorou, C., Peters, C., Solvberg, I.: Evaluation of Digital Libraries. Int. J. Digit. Libr. 8, 21–38 (2007)CrossRefGoogle Scholar
  21. 21.
    Bruce, T.R., Hillmann, D.I.: The continuum of metadata quality: defining, expressing, exploiting. In: Hillman, D., Westbrooks, E. (eds.) Metadata in practice. ALA Editions, Chicago (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Leonidas Papachristopoulos
    • 1
    • 4
  • Nikos Kleidis
    • 2
  • Michalis Sfakakis
    • 1
  • Giannis Tsakonas
    • 3
  • Christos Papatheodorou
    • 1
    • 4
  1. 1.Department of Archives, Library Science and MuseologyIonian UniversityCorfuGreece
  2. 2.Department of InformaticsAthens University of Economics and BusinessAthensGreece
  3. 3.Library & Information CenterUniversity of PatrasPatrasGreece
  4. 4.Digital Curation Unit, IMIS‘Athena’ Research CentreAthensGreece

Personalised recommendations