Advertisement

An Expert System for Water Quality Monitoring Based on Ontology

  • Edmond JajagaEmail author
  • Lule Ahmedi
  • Figene Ahmedi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 544)

Abstract

Semantic technologies have proved to be a suitable foundation for integrating Big Data applications. Wireless Sensor Networks (WSNs) represent a common domain which knowledge bases are naturally modeled through ontologies. In our previous works we have built domain ontology of WSN for water quality monitoring. The SSN ontology was extended to meet the requirements for classifying water bodies into appropriate statuses based on different regulation authorities. In this paper we extend this ontology with a module for identifying the possible sources of pollution. To infer new implicit knowledge from the knowledge bases different rule systems have been layered over ontologies by state-of-the-art WSN systems. A production rules system was developed to demonstrate how our ontology can be used to enable water quality monitoring. The paper presents an example of system validation with simulated data, but it is developed for use within the InWaterSense project with real data. It demonstrates how Biochemical Oxygen Demand observations are classified based on Water Framework Directive regulation standard and provide its eventual sources of pollution. The system features and challenges are discussed by also suggesting the potential directions of Semantic Web rule layer developments for reasoning with stream data.

Keywords

Expert system Semantic Web Ontology Metadata SSN Big Data Stream data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jajaga, E., Ahmedi, L., Abazi-Bexheti, L.: Semantic Web trends on reasoning over sensor data. In: 8th South East European Doctoral Student Conference, Greece (2013)Google Scholar
  2. 2.
    Ahmedi, L., Jajaga, E., Ahmedi, F.: An ontology framework for water quality management. In: Corcho, Ó., Henson, C.A., Barnaghi, P.M. (eds.) SSN@ISWC, Sydney, pp. 35–50 (2013)Google Scholar
  3. 3.
    MacLarty, I., Langevine, L., Bossche, M.V., Ross, P.: Using SWRL for Rule Driven Applications. Technical report (2009)Google Scholar
  4. 4.
    Unel, G., Roman, D.: Stream reasoning: a survey and further research directions. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 653–662. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Groza, A., Letia, I.A.: Plausible description logic programs for stream reasoning. Future Internet 4, 865–881 (2001)CrossRefGoogle Scholar
  6. 6.
    de Bruijn, J., Polleres, A., Lara, R., Fensel, D.: OWL DL vs. OWL flight: conceptual modeling and reasoning for the semantic web. In: Fourteenth International World Wide Web Conference, pp. 623–632. ACM, Chiba (2005)Google Scholar
  7. 7.
    Report Highlight for Survey Analysis: Big Data Investment Grows but Deployments Remain Scarce in 2014, http://www.gartner.com/newsroom/id/2848718
  8. 8.
    Liebig, T., Opitz, M.: Reasoning over dynamic data in expressive knowledge bases with rscale. In: The 10th International Semantic Web Conference, Bonn, Germany (2011)Google Scholar
  9. 9.
    Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence 19(1), 17–37 (1982)CrossRefGoogle Scholar
  10. 10.
    Barbieri, D.F.: C-SPARQL: SPARQL for continuous querying. In: Proceedings of the 18th International World Wide Web Conf. (WWW 2009), pp. 1061–1062 (2009)Google Scholar
  11. 11.
    Hill, E.F.: Jess in action: java rule-based systems. Manning Publications Co., Greenwich (2003)Google Scholar
  12. 12.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML (2004)Google Scholar
  13. 13.
    Stuckenschmidt, H., Ceri, S., Della Valle, E., van Harmelen, F.: Towards expressive stream reasoning. In: Proceedings of the Dagstuhl Seminar on Semantic Aspects of Sensor Networks (2010)Google Scholar
  14. 14.
    Della Valle, E., Schlobach, S., Krötzsch, M., Bozzon, A., Ceri, S., Horrocks, I.: Order matters! harnessing a world of orderings for reasoning over massive data. Semantic Web Journal 4(2), 219–231 (2013)Google Scholar
  15. 15.
    Sheth, A., Henson, C., Sahoo, S.S.: Semantic sensor web. IEEE Internet Computing 12(4), 78–83 (2008)CrossRefGoogle Scholar
  16. 16.
    Albeladi, R., Martinez, K., Gibbins, N.: Incremental rule-based reasoning over RDF streams: an expression of interest. In: RDF Stream Processing Workshop at the 12th Extended Semantic Web Conference, Portoroz, Slovenia (2015)Google Scholar
  17. 17.
    Directive 2000/60/EC of the European Parliament and of the Council of Europe of 23 October 2000 establishing a framework for Community action in the Field of water quality O.J. L327/1 (2000)Google Scholar
  18. 18.
    Sources of Pollution, Foundation for Water Research, Information Note FWR-WFD16 (2005)Google Scholar
  19. 19.
    Margara, A., Urbani, J., van Harmelen, F., Bal, H.: Streaming the web: reasoning over dynamic data. Web Semantics: Science, Services and Agents on the World Wide Web 25, 24–44 (2014)CrossRefGoogle Scholar
  20. 20.
    Walzer, K., Groch, M., Breddin, T.: Time to the rescue - supporting temporal reasoning in the rete algorithm for complex event processing. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 635–642. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Whitehouse, K., Zhao, F., Liu, J.: Semantic streams: a framework for composable semantic interpretation of sensor data. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868, pp. 5–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Wei, W., Barnaghi, P.: Semantic annotation and reasoning for sensor data. In: Barnaghi, P., Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC 2009. LNCS, vol. 5741, pp. 66–76. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Keßler, C., Raubal, M., Wosniok, C.: Semantic rules for context-aware geographical information retrieval. In: Barnaghi, P., Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC 2009. LNCS, vol. 5741, pp. 77–92. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Calero, J.M.A., Ortega, A.M., Perez, G.M., Blaya, J.A.B., Skarmeta, A.F.G.: A non-monotonic expressiveness extension on the semantic web rule language. J. Web Eng. 11(2), 93–118 (2012)Google Scholar
  25. 25.
    Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: StreamRule: a nonmonotonic stream reasoning system for the semantic web. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp. 247–252. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub. T.: Answer set programming for stream reasoning. In: CoRR (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceSouth East European UniversityTetovëMacedonia
  2. 2.Department of Computer EngineeringUniversity of PrishtinaPrishtinëKosova
  3. 3.Department of Hydro-TechnicUniversity of PrishtinaPrishtinëKosova

Personalised recommendations