Advertisement

Lateralization and Specialization of the Brain

  • Gerald Young
Chapter

Abstract

The second chapter in the present book on the brain is on cerebral hemispheric specialization and the associated topic of behavioral lateralization. As with other areas of brain study, the concept of networks is making inroads in this area. The findings in this regard reinforce the left hemisphere as differentially specialized for its skills relative to the right. Although each hemisphere has its specializations, the left hemisphere has been called dominant and, in this regard, the network approach is touting its efficiency and also its more centrally organized characteristics. Moreover, the findings show that even neonates possess this type of left-hemisphere specialization. These findings on the differential networking in the hemispheres are consistent with the present model that the left hemisphere possesses better activation–inhibition coordination skills compared to the right hemisphere, which has other inhibitory skills.

Aspects of manual behavior reflect the differential skills of the left and right hemispheres, and so reflect a manual specialization that reflects its underlying hemispheric specialization. Handedness is not as clearly related to hemispheric specialization as are other manual behaviors. Most often, language abilities are associated with the left hemisphere, which is why it is called the dominant hemisphere, but each hemisphere has its skill set (e.g., certain spatial skills in the right hemisphere) and, moreover, the advantages that each hemisphere possesses are relative rather than absolute ones. Research is showing that the left hemisphere is associated with certain cognitive skills, as well. The hemispheres work in concert in adaptation to context, problem-solving, and so on. Interhemispheric communication is important in this regard.

As for how the chapter is organized as it reviews the research on hemispheric specialization, manual specialization, and behavioral lateralities, and their relationship to handedness, language development, cognitive achievement, and so on, it considers each age period separately from preconception into childhood, in particular. For each age period under review, first, results of research related to manual lateralities are presented. Then, for each age period, other results related to the brain are presented. Finally, aside from considering the developmental origins of specialization/lateralization, the chapter considers evolutionary ones.

Keywords

Left Hemisphere Middle Frontal Gyrus Bimanual Coordination Hemisphere Specialization Behavioral Activation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achenbach, T. M. (1991). Manual for the adult self-report and 1991 profile. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
  2. Annett, M. (2002). Handedness and brain asymmetry: The right shift theory. Hove, UK: Psychology Press.Google Scholar
  3. Arbib, M. A. (2006). The mirror system hypothesis on the linkage of action and languages. In M. A. Arbib (Ed.), Action to language via the mirror neuron system (pp. 3–47). New York: Cambridge University Press.CrossRefGoogle Scholar
  4. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170–177.PubMedCrossRefGoogle Scholar
  5. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18, 177–185.PubMedCrossRefGoogle Scholar
  6. Aslin, R. N., Shukla, M., & Emberson, L. L. (2015). Hemodynamic correlates of cognition in human infants. Annual Review of Psychology, 66, 349–379.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Atzil, S., Hendler, T., & Feldman, R. (2011). Specifying the neurobiological basis of human attachment: Brain, hormones, and behavior in synchronous and intrusive mothers. Neuropsychopharmacology, 36, 2603–2615.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Babik, I., Campbell, J. M., & Michel, G. F. (2013). Postural influences on the development of infant lateralized and symmetric hand-use. Child Development, 85, 294–307.PubMedCrossRefGoogle Scholar
  9. Balconi, M., Finocchiaro, R., & Canavesio, Y. (2014). Reward-system effect (BAS rating), left hemispheric “unbalance” (alpha band oscillations) and decision impairments in drug addiction. Addictive Behaviors, 39, 1026–1032.PubMedCrossRefGoogle Scholar
  10. Barber, A. D., Srinivasan, P., Joel, S. E., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2012). Motor “dexterity”? Evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children. Cerebral Cortex, 22, 51–59.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain, 135, 1154–1164.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Belsky, J., & Pluess, M. (2009). The nature (and nurture?) of plasticity in early human development. Perspectives on Psychological Science, 4, 345–351.PubMedCrossRefGoogle Scholar
  13. Berl, M. M., Mayo, J., Parks, E. N., Rosenberger, L. R., VanMeter, J., Ratner, N. B., et al. (2014). Regional differences in the developmental trajectory of lateralization of the language network. Human Brain Mapping, 35, 270–284.Google Scholar
  14. Bishop, D. V. M. (2013). Cerebral asymmetry and language development: Cause, correlate, or consequence? Science, 340, 6138. doi: 10.1126/science.1230531.CrossRefGoogle Scholar
  15. Björk, T., Brus, O., Osika, W., & Montgomery, S. (2012). Laterality, hand control and scholastic performance: A British birth cohort study. British Medical Journal Open, 2, e000314. doi: 10.1136/bmjopen-2011-000314.Google Scholar
  16. Borst, G., Poirel, N., Pineau, A., Cassotti, M., & Houdé, O. (2013). Inhibitory control efficiency in a Piaget-like class-inclusion task in school-age children and adults: A developmental negative priming study. Developmental Psychology, 49, 1366–1374.PubMedCrossRefGoogle Scholar
  17. Bourgeois, A., Chica, A. B., Migliaccio, R., Thiebaut de Schotten, M., & Bartolomeo, P. (2012). Cortical control of inhibition of return: Evidence from patients with inferior parietal damage and visual neglect. Neuropsychologia, 50, 800–809.PubMedCrossRefGoogle Scholar
  18. Bourgeois, A., Chica, A. B., Valero-Cabré, A., & Bartolomeo, P. (2013). Cortical control of inhibition of return: Exploring the causal contributions of the left parietal cortex. Cortex, 49, 2927–2934.PubMedCrossRefGoogle Scholar
  19. Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Science, 9, 322–328.CrossRefGoogle Scholar
  20. Braun, C. M. J. (2007). Evolution of hemispheric specialisation of antagonistic systems of management of the body’s energy resources. Laterality, 12, 397–427.PubMedGoogle Scholar
  21. Caeyenberghs, K., & Leemans, A. (2014). Hemispheric lateralization of topological organization in structural brain networks. Human Brain Mapping, 35, 4944–4957.PubMedCrossRefGoogle Scholar
  22. Campbell, J. M., Marcinowski, E. C., Babik, I., & Michel, G. F. (2015). The influence of a hand preference for acquiring objects on the development of a hand preference for unimanual manipulation from 6 to 14 months. Infant Behavior and Development, 39, 107–117.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Campbell, J. M., Marcinowski, E. C., Latta, J., & Michel, G. F. (2015). Different assessment tasks produce different estimates of handedness stability during the eight to 14 month age period. Infant Behavior and Development, 39, 67–80.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cerutti, C. (2013). Building a functional multiple intelligence theory to advance educational neuroscience. Frontiers in Psychology, 4, 950. doi: 10.3389/fpsyg.2013.00950.Google Scholar
  25. Cheng, Y., Lee, S. Y., Chen, H. Y., Wang, P., & Decety, J. (2012). Voice and emotion processing in the human neonatal brain. Journal of Cognitive Neuroscience, 24, 1411–1419.PubMedCrossRefGoogle Scholar
  26. Cheyne, D., Jobst, C., Tesan, G., Crain, S., & Johnson, B. (2014). Movement-related neuromagnetic fields in preschool age children. Human Brain Mapping, 35, 4858–4875.PubMedCrossRefGoogle Scholar
  27. Christou, A. I., Endo, S., Wallis, Y., Bair, H., Zeggers, M. P., & McCleery, J. P. (2015). Variation in serotonin transporter linked polymorphic region (5-HTTLPR) short/long genotype modulates resting frontal electroencephalography asymmetries in children. Development and Psychopathology, 1–12. doi: 10.1017/S0954579415000413.
  28. Cochet, H. (2012). Development of hand preference for object-directed actions and pointing gestures: A longitudinal study between 15 and 25 months of age. Developmental Psychobiology, 54, 105–111.PubMedCrossRefGoogle Scholar
  29. Cochet, H., & Byrne, R. W. (2013). Evolutionary origins of human handedness: Evaluating contrasting hypotheses. Animal Cognition, 16, 531–542.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cochet, H., & Vauclair, J. (2010). Pointing gestures produced by toddlers from 15 to 30 months: Different functions, hand shapes and laterality patterns. Infant Behavior and Development, 33, 431–441.PubMedCrossRefGoogle Scholar
  31. Corballis, M. C., Badzakova-Trajkov, G., & Häberling, I. S. (2012). Right hand, left brain: Genetic and evolutionary bases of cerebral asymmetries for language and manual action. Wiley Interdisciplinary Reviews: Cognitive Science, 3, 1–17.PubMedCrossRefGoogle Scholar
  32. Corbetta, D., Friedman, D. R., & Bell, M. A. (2014). Brain reorganization as a function of walking experience in 12-month-old infants: Implications for the development of manual laterality. Frontiers in Psychology, 5, 245. doi: 10.3389/fpsyg.2014.00245.PubMedPubMedCentralGoogle Scholar
  33. Crow, T. J. (2010). A theory of origin of cerebral asymmetry: Epigenetic variation superimposed on a fixed right-shift. Laterality, 15, 289–303.PubMedGoogle Scholar
  34. Dambacher, F., Sack, A. T., Lobbestael, J., Arntz, A., Brugmann, S., & Schuhmann, T. (2014). The role of right prefrontal and medial cortex in response inhibition: Interfering with action restraint and action cancellation using transcranial magnetic brain stimulation. Journal of Cognitive Neuroscience, 26, 1775–1784.PubMedCrossRefGoogle Scholar
  35. Davidson, R. J. (2000). Affective style, psychopathology, and resilience: Brain mechanisms and plasticity. American Psychologist, 55, 1196–1214.PubMedCrossRefGoogle Scholar
  36. Davidson, R. J., Ekman, P., Saron, C. D., & Senulius, J. A. (1990). Approach-withdrawal and cerebral asymmetry: Emotional express and brain physiology. International Journal of Personality and Social Psychology, 58, 330–341.CrossRefGoogle Scholar
  37. Davidson, R. J., & Fox, N. A. (1982). Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants. Science, 218, 1235–1237.PubMedCrossRefGoogle Scholar
  38. Dawson, G., Ashman, S. B., Hessl, D., Spieker, S., Frey, K., Panagiotides, H., et al. (2001). Autonomic and brain electrical activity in securely- and insecurely-attached infants of depressed mothers. Infant Behavior and Development, 24, 135–149.Google Scholar
  39. de Vries, J. I. P., Wimmers, R. H., Ververs, I. A. P., Hopkins, B., Savelsbergh, G. J. P., & van Geijn, H. P. (2001). Fetal handedness and head position preference: A developmental study. Developmental Psychobiology, 39, 171–178.PubMedCrossRefGoogle Scholar
  40. Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis Kaplan executive function system. San Antonio, TX: The Psychological Corporation.Google Scholar
  41. Dempster, F., & Brainerd, C. (Eds.). (1995). Interference and inhibition in cognition. San Diego, CA: Academic.Google Scholar
  42. Denckla, M. B. (1985). Revised PANESS. Psychopharmacology Bulletin, 21, 773–800.PubMedGoogle Scholar
  43. Dennis, E. L., & Thompson, P. M. (2013). Mapping connectivity in the developing brain. International Journal of Developmental Neuroscience, 31, 525–542.PubMedCrossRefGoogle Scholar
  44. Dubois, J., Hertz-Pannier, L., Cachia, A., Mangin, J. F., Le Bihan, D., & Dehaene-Lambertz, G. (2009). Structural asymmetries in the infant language and sensori-motor networks. Cerebral Cortex, 19, 414–423.PubMedCrossRefGoogle Scholar
  45. Dunfield, K. A. (2014). A construct divided: Prosocial behavior as helping, sharing, and comforting subtypes. Frontiers in Psychology, 5, 958. doi: 10.3389/fpsyg.2014.00958.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary-neurodevelopmental theory. Development and Psychopathology, 23, 7–28.Google Scholar
  47. Esseily, R., Jacquet, A.-Y., & Fagard, J. (2011). Handedness for grasping objects and pointing and the development of language in 14-month-old infants. Laterality, 16, 565–585.PubMedGoogle Scholar
  48. Everts, R., Lidzba, K., Wilke, M., Kiefer, C., Mordasini, M., Schroth, G., et al. (2009). Strengthening of laterality of verbal and visuospatial functions during childhood and adolescence. Human Brain Mapping, 30, 473–483.Google Scholar
  49. Fagard, J., Sirri, L., & Rämä, P. (2014). Effect of handedness on the occurrence of semantic N400 priming effect in 18- and 24-month-old children. Frontiers in Psychology, 5, 355. doi: 10.3389/fpsyg.2014.00355.PubMedPubMedCentralGoogle Scholar
  50. Fortier, P., Van Lieshout, R. J., Waxman, J. A., Boyle, M. H., Saigal, S., & Schmidt, L. A. (2014). Are orchids left and dandelions right? Frontal brain activation asymmetry and its sensitivity to developmental context. Psychological Science, 25, 1526–1533.PubMedCrossRefGoogle Scholar
  51. Fox, N. A. (1991). If it’s not left, it’s right: Electroencephalograph asymmetry and the development of emotion. American Psychologist, 46, 863–872.PubMedCrossRefGoogle Scholar
  52. Friederici, A. D., Brauer, J., & Lohmann, G. (2011). Maturation of the language network: from inter-to intrahemispheric connectivities. PLoS ONE, 6, e20726. doi: 10.1371/journal.pone.0020726.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gander, M., & Buchheim, A. (2015). Attachment classification, psychophysiology and frontal EEG asymmetry across the lifespan: A review. Frontiers in Human Neuroscience, 9, 79. doi: 10.3389/fnhum.2015.00079.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gazzaniga, M. S. (2013). Shifting gears: Seeking new approaches for mind/brain mechanisms. Annual Review of Psychology, 64, 1–20.PubMedCrossRefGoogle Scholar
  55. Gioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2000). Behavior rating inventory of executive function (BRIEF). Odessa, FL: Psychological Assessment Resources.Google Scholar
  56. Glasel, H., Leroy, F., Dubois, J., Hertz-Pannier, L., Mangin, J. F., & Dehaene-Lambertz, G. (2011). A robust cerebral asymmetry in the infant brain: The rightward superior temporal sulcus. NeuroImage, 58, 716–723.PubMedCrossRefGoogle Scholar
  57. Gonzalez, C. L. R., Li, F., Mills, K. J., Rosen, N., & Gibb, R. L. (2014). Speech in action: Degree of hand preference for grasping predicts speech articulation competence in children. Frontiers in Psychology, 5, 1267. doi: 10.3389/fpsyg.2014.01267.PubMedPubMedCentralGoogle Scholar
  58. Gonzalez, C. L. R., Mills, K. J., Genee, I., Li, F., Piquette, N., Rosen, N., et al. (2014). Getting the right grasp on executive function. Frontiers in Psychology, 5, 285. doi: 10.3389/fpsyg.2014.00285.
  59. Grimshaw, G. M., & Carmel, D. (2014). An asymmetric inhibition model of hemispheric differences in emotional processing. Frontiers in Psychology, 5, 489. doi: 10.3389/fpsyg.2014.00489.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Groen, M. A., Whitehouse, A. J., Badcock, N. A., & Bishop, D. V. (2012). Does cerebral lateralization develop? A study using functional transcranial Doppler ultrasound assessing lateralization for language production and visuospatial memory. Brain and Behavior, 2, 256–296.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Grossmann, T., Johnson, M. H., Lloyd-Fox, S., Blasi, A., Deligianni, F., Elwell, C., et al. (2008). Early cortical specialization for face-to-face communication in human infants. Proceedings of the Royal Society B: Biological Sciences, 275, 2803–2811.Google Scholar
  62. Grossmann, T., Parise, E., & Friederici, A. D. (2010). The detection of communicative signals directed at the self in infant prefrontal cortex. Frontiers in Human Neuroscience, 4, 201. doi: 10.3389/fnhum.2010.00201.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Habas, P. A., Scott, J. A., Roosta, A., Rajagopalan, V., Kim, K., Rousseau, F., et al. (2012). Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cerebral Cortex, 22, 13–25.Google Scholar
  64. Harmon-Jones, E., Gable, P. A., & Peterson, C. K. (2010). The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biological Psychology, 84, 451–462.PubMedCrossRefGoogle Scholar
  65. Heitzeg, M. M., Nigg, J. T., Hardee, J. E., Soules, M., Steinberg, D., Zubieta, J-K., et al. (2014). Left middle frontal gyrus response to inhibitory errors in children prospectively predicts early problem substance use. Drug and Alcohol Dependence, 141, 51–57.Google Scholar
  66. Hepper, P. G. (2013). The developmental origins of laterality: Fetal handedness. Developmental Psychobiology, 55, 588–595.PubMedCrossRefGoogle Scholar
  67. Hepper, P. G., McCartney, G. R., & Shannon, E. A. (1998). Lateralised behavior in first trimester human fetuses. Neuropsychologia, 36, 531–534.PubMedCrossRefGoogle Scholar
  68. Hepper, P. G., Shahidullah, S., & White, R. (1991). Handedness in human fetus. Neuropsychologia, 29, 1107–1111.PubMedCrossRefGoogle Scholar
  69. Hepper, P. G., Wells, D. K., & Lynch, C. (2005). Prenatal thumb sucking is related to postnatal handedness. Neuropsychologia, 43, 313–315.PubMedCrossRefGoogle Scholar
  70. Hervé, P. Y., Zago, L., Petit, L., Mazoyer, B., & Tzourio-Mazoyer, N. (2013). Revisiting human hemispheric specialization with neuroimaging. Trends in Cognitive Sciences, 17, 69–80.PubMedCrossRefGoogle Scholar
  71. Hill, J., Dierker, D., Neil, J., Inder, T., Knutsen, A., Harwell, J., et al. (2010). A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants. Journal of Neuroscience, 30, 2268–2276.Google Scholar
  72. Holowka, S., & Petitto, L. A. (2002). Left hemisphere cerebral specialization for babies while babbling. Science, 297, 1515. doi: 10.1126/science.1074941.
  73. Houdé, O., Pineau, A., Leroux, G., Poirel, N., Perchey, G., Lanoë, C., et al. (2011). Functional magnetic resonance imaging study of Piaget’s conservation-of-number task in preschool and school-age children: A neo-Piagetian approach. Journal of Experimental Child Psychology, 110, 332–346.Google Scholar
  74. Houdé, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical procession, reading, and executive functions in the developing brain: An fMRI meta-analysis on 52 studies including 842 children. Developmental Science, 13, 876–885.PubMedCrossRefGoogle Scholar
  75. Im, K., Jo, H. J., Mangin, J. F., Evans, A. C., Kim, S. I., & Lee, J. M. (2010). Spatial distribution of deep sulcal landmarks and hemispherical asymmetry on the cortical surface. NeuroImage, 58, 716–723.Google Scholar
  76. Iturria-Medina, Y., Pérez Fernández, A., Morris, D. M., Canales-Rodríguez, E. J., Haroon, H. A., García Pentón, L., et al. (2011). Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates. Cerebral Cortex, 21, 56–67.Google Scholar
  77. Jacquet, A.-Y., Esseily, R., Rider, D., & Fagard, J. (2012). Handedness for grasping objects and declarative pointing: A longitudinal study. Developmental Psychobiology, 54, 36–46.PubMedCrossRefGoogle Scholar
  78. Johansson, A.-M., Domellöf, E., & Rönnqvist, L. (2014). Long-term influences of a preterm birth on movement organization and side specialization in children at 4–8 years of age. Developmental Psychobiology, 56, 1263–1277.PubMedGoogle Scholar
  79. Joseph, R. M., Fricker, Z., Fenoglio, A., Lindgren, K. A., Knaus, T. A., & Tager-Flusberg, H. (2014). Structural asymmetries of language-related gray and white matter and their relationship to language function in young children with ASD. Brain Imaging and Behavior, 8, 60–72.PubMedCrossRefGoogle Scholar
  80. Kahrs, B. A., Jung, W. P., & Lockman, J. J. (2014). When does tool use become distinctively human? Hammering in young children. Child Development, 85, 1050–1061.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kasprian, G., Langs, G., Brugger, P. C., Bittner, M., Weber, M., Arantes, M., et al. (2011). The prenatal origin of hemispheric asymmetry: An in utero neuroimaging study. Cerebral Cortex, 21, 1076–1083.Google Scholar
  82. Kaufman, A., & Kaufman, N. (1983). Kaufman assessment battery for children: Administration and scoring manual. Circle Pines, MN: American Guidance Service.Google Scholar
  83. Kikuchi, M., Shitamichi, K., Yoshimura, Y., Ueno, S., Remijn, G. B., Hirosawa, T., et al. (2011). Lateralized theta wave connectivity and language performance in 2- to 5-year-old children. Journal of Neuroscience, 31, 14984–14988.Google Scholar
  84. Kivilevitch, Z., Achiron, R., & Zalel, Y. (2010). Fetal brain asymmetry: In utero sonographic findings. American Journal of Obstetrics and Gynecology, 202, 359.e1–e8.Google Scholar
  85. Klar, A. (2004). An epigenetic hypothesis for human brain laterality, handedness, and psychosis development. Cold Spring Harbor Symposia Quantitative Biology, 69, 499–506.CrossRefGoogle Scholar
  86. Krawczyk, D. C. (2012). The cognition and neuroscience of relational reasoning. Brain Research, 1428, 13–23.PubMedCrossRefGoogle Scholar
  87. Kurjak, A., Vecek, N., Hafner, T., Bozek, T., Funduk-Kirjak, B., & Ujevic, B. (2002). Prenatal diagnosis: What does four-dimensional ultrasound add? Journal of Perinatal Medicine, 30, 57–62.PubMedGoogle Scholar
  88. Kurth, F., Mayer, E. A., Toga, A. W., Thompson, P. M., & Luders, E. (2013). The right inhibition? Callosal correlates of hand performance in healthy children and adolescents callosal correlates of hand performance. Human Brain Mapping, 34, 2259–2265.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lebel, C., & Beaulieu, C. (2009). Lateralization of arcuate fasciculus from childhood to adulthood and its relation to cognitive abilities in children. Human Brain Mapping, 30, 3563–3573.PubMedCrossRefGoogle Scholar
  90. Li, G., Nie, J., Li, W., Shi, F., Lyan, A. E., Lin, W., et al. (2014). Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cerebral Cortex, 24, 1289–1300.Google Scholar
  91. Lloyd-Fox, S., Blasi, A., Volein, A., Everdell, N., Elwell, C. E., & Johnson, M. H. (2009). Social perception in infancy: A near infrared spectroscopy study. Child Development, 80, 986–999.PubMedCrossRefGoogle Scholar
  92. MacDonald, P. A., Ganjavi, H., Collins, D. L., Evans, A. C., & Karama, S. (2014). Investigating the relation between striatal volume and IQ. Brain Imaging and Behavior, 8, 52–59.PubMedCrossRefGoogle Scholar
  93. Mackey, A. P., Whitaker, K. J., & Bunge, S. A. (2012). Experience-dependent plasticity in white matter microstructure: Reasoning training alters structural connectivity. Frontiers in Neuroanatomy, 6, 32. doi: 10.3389/fnana.2012.00032.PubMedPubMedCentralCrossRefGoogle Scholar
  94. MacNeilage, P. F. (2014). Evolution of the strongest vertebrate rightward action asymmetries: Marine mammal sidedness and human handedness. Psychological Bulletin, 140, 587–609.PubMedCrossRefGoogle Scholar
  95. Marinsek, N., Turner, B. O., Gazzaniga, M., & Miller, M. B. (2014). Divergent hemispheric reasoning strategies: Reducing uncertainty versus resolving inconsistency. Frontiers in Human Neuroscience, 8, 839. doi: 10.3389/fnhum.2014.00839.PubMedPubMedCentralCrossRefGoogle Scholar
  96. McCartney, G., & Hepper, P. G. (1999). Developmental of lateralised behavior in the human fetus from 12 to 27 weeks’ gestation. Developmental Medicine and Child Neurology, 41, 83–86.PubMedCrossRefGoogle Scholar
  97. McManus, C. (2002). Right hand, left hand. London: Weidenfeld & Nicolson.Google Scholar
  98. Michel, G. F., Babik, I., Nelson, E. L., Campbell, J. M., & Marcinowski, E. C. (2013). How the development of handedness could contribute to the development of language. Developmental Psychobiology, 55, 608–620.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Michel, G. F., Babik, I., Shue, C.-F., & Campbell, J. M. (2013). Latent classes in the developmental trajectories of infant handedness. Developmental Psychology, 50, 349–359.PubMedCrossRefGoogle Scholar
  100. Minagawa-Kawai, Y., Cristià, A., & Dupoux, E. (2011). Cerebral lateralization and early speech acquisition: A developmental scenario. Developmental Cognitive Neuroscience, 1, 217–232.PubMedCrossRefGoogle Scholar
  101. Missana, M., & Grossmann, T. (2014). Infants’ emerging sensitivity to emotional body expressions: Insights from asymmetrical frontal brain activity. Developmental Psychology, 51, 151–160.PubMedCrossRefGoogle Scholar
  102. Morange-Majoux, F., & Devouche, E. (2014). Social encouragement can influence manual preference in 6 month-old-infants. Frontiers in Psychology, 5, 1225. doi: 10.3389/fpsyg.2014.01225.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Morange-Majoux, F., Lemoine, C., & Dellatolas, G. (2013). Early manifestations of manual specialization in infants: A longitudinal study from 20 to 30 weeks. Laterality, 18, 231–250.PubMedGoogle Scholar
  104. Morillon, B., Lehongre, K., Frackowiak, R. S., Ducorps, A., Kleinschmidt, A., Poeppel, D., et al. (2010). Neurophysiological origin of human brain asymmetry for speech and language. Proceedings of the National Academy of Sciences USA, 107, 18688–18693.Google Scholar
  105. Nagy, E., Pal, A., & Orvos, H. (2014). Learning to imitate individual finger movements by the human neonate. Developmental Science, 17, 841–857.PubMedCrossRefGoogle Scholar
  106. Nakato, E., Otsuka, Y., Kanazawa, S., Yamaguchi, M. K., & Kakigi, R. (2011). Distinct differences in the pattern of hemodynamic response to happy and angry facial expressions in infants—a near-infrared spectroscopic study. NeuroImage, 54, 1600–1606.PubMedCrossRefGoogle Scholar
  107. Nee, D. E., Brown, J. W., Askren, M. K., Berman, M. G., Demiralp, E., Krawitz, A., et al. (2012). A meta-analysis of executive components of working memory. Cerebral Cortex, 23, 264–282.Google Scholar
  108. Nelson, E. L., Campbell, J. M., & Michel, G. F. (2013). Unimanual to bimanual: Tracking the development of handedness from 6 to 24 months. Infant Behavior and Development, 36, 181–188.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Nuñez, S. C., Dapretto, M., Katzir, T., Starr, A., Bramen, J., Kan, E., et al. (2011). fMRI of syntactic processing in typically developing children: Structural correlates in the inferior frontal gyrus. Developmental Cognitive Neuroscience, 1, 313–323.Google Scholar
  110. O’Connor, D. A., Upton, D. J., Moore, J., & Hester, R. (2014). Motivationally significant self-control: Enhanced action withholding involves the right inferior frontal junction. Journal of Cognitive Neuroscience, 27, 112–123.CrossRefGoogle Scholar
  111. Ocklenburg, S., Beste, C., & Güntürkün, O. (2013). Handedness: A neurogenetic shift of perspective. Neuroscience and Biobehavioral Reviews, 37, 2788–2793.PubMedCrossRefGoogle Scholar
  112. Ocklenburg, S., Ness, V., Güntürkün, O., Suchan, B., & Beste, C. (2013). Response inhibition is modulated by functional cerebral asymmetries for facial expression perception. Frontiers in Psychology, 4, 879. doi: 10.3389/fpsyg.2013.00879.PubMedPubMedCentralGoogle Scholar
  113. Otsuka, Y., Nakato, E., Kanazawas, S., Yamaguchi, M. K., Watanabe, S., & Kakigi, R. (2007). Neural activation to upright and inverted faces in infants measured by near infrared spectroscopy. NeuroImage, 34, 399–406.PubMedCrossRefGoogle Scholar
  114. Paulus, M., Kühn-Popp, M., Licata, M., Sodian, B., & Meinhardt, J. (2013). Neural correlates of prosocial behavior in infancy: Different neurophysiological mechanisms support the emergence of helping and comforting. NeuroImage, 66, 522–530.PubMedCrossRefGoogle Scholar
  115. Piaget, J. (1941/1952). The child’s conception of number. London: Kegan Paul, Trench, & Trubner.Google Scholar
  116. Pluess, M., & Belsky, J. (2013). Vantage sensitivity: Individual differences in response to positive experiences. Psychological Bulletin, 139, 901–916.PubMedCrossRefGoogle Scholar
  117. Preslar, J., Kushner, H. I., Marino, L., & Pearce, B. (2014). Autism, lateralization, and handedness: A review of the literature and meta-analysis. Laterality, 19, 64–95.PubMedGoogle Scholar
  118. Rat-Fischer, L., O’Regan, J. K., & Fagard, J. (2013). Handedness in infants’ tool use. Developmental Psychobiology, 55, 860–868.PubMedCrossRefGoogle Scholar
  119. Ratnarajah, N., Rifkin-Graboi, A., Fortier, M. V., Chong, Y. S., Kwek, K., Saw, S. M., et al. (2014). Structural connectivity asymmetry in the neonatal brain. NeuroImage, 75, 187–194.Google Scholar
  120. Reid, C. S., & Serrien, D. J. (2012). Handedness and the excitability of cortical inhibitory circuits. Behavioral Brain Research, 230, 144–148.CrossRefGoogle Scholar
  121. Reissland, N., Francis, B., Aydin, E., Mason, J., & Exley, K. (2014). Development of prenatal lateralization: Evidence from fetal mouth movements. Physiology & Behavior, 131, 160–163.CrossRefGoogle Scholar
  122. Rogers, L. J., Zucca, P., & Vallortigara, G. (2004). Advantages of having a lateralized brain. Proceedings of the Royal Society B: Biological Science, 271, S420–S422.Google Scholar
  123. Rönnqvist, L., & Domellöf, E. (2006). Quantitative assessment of right and left reaching movements in infants: A longitudinal study from 6 to 36 months. Developmental Psychobiology, 48, 444–459.PubMedCrossRefGoogle Scholar
  124. Rosch, R. E., Bishop, D. V., & Badcock, N. A. (2012). Lateralised visual attention is unrelated to language lateralisation, and not influenced by task difficulty–a functional transcranial Doppler study. Neuropsychologia, 50, 810–815.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rubia, K., Russell, T., Overmeyer, S., Brammer, M. J., Bullmore, E. T., Sharma, T., et al. (2001). Mapping motor inhibition: Conjunctive brain activations across different versions of go/no-go and stop tasks. NeuroImage, 13, 250–261.Google Scholar
  126. Sacrey, L-A., Arnold, B., Whishaw, I. Q., & Gonzales, C. L. (2013). Precocious hand use preference in reach-to-eat behavior versus manual construction in 1- to 5-year-old children. Developmental Psychobiology, 55, 902–911.Google Scholar
  127. Sainburg, R. L. (2014). Convergent models of handedness and brain lateralization. Frontiers in Psychology, 5, 1092. doi: 10.3389/fpsyg.2014.01092.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Scharoun, S. M., & Bryden, P. J. (2014). Hand preference, performance abilities, and hand selection in children. Frontiers in Psychology, 5, 82. doi: 10.3389/fpsyg.2014.00082.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Schmidt, L. A. (1999). Frontal brain electrical activity in shyness and sociability. Psychological Science, 10, 316–320.CrossRefGoogle Scholar
  130. Schmidt, L. A., Shahinfar, A., & Fox, N. A. (1996). Regional brain electrical activity (EEG) in toddlers’ externalizing problems. Infant Behavior and Development, 19, 75.CrossRefGoogle Scholar
  131. Serrien, D. J., & Sovijävi-Spapé, M. M. (2013). Cognitive control of response inhibition and switching: Hemispheric lateralization and hand preference. Brain and Cognition, 82, 283–290.PubMedCrossRefGoogle Scholar
  132. Shackman, A. J., McMenamin, B. W., Maxwell, J. S., Greischar, L. L., & Davidson, R. J. (2009). Right dorsolateral prefrontal cortical activity and behavioral inhibition. Psychological Science, 20, 1500–1506.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Sheridan, M., Kharitonova, M., Martin, R. E., Chatterjee, A., & Gabrieli, J. D. E. (2014). Neural substrates of the development of cognitive control in children ages 5–10 years. Journal of Cognitive Neuroscience, 26, 1840–1850.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Shobe, E. R. (2014). Independent and collaborative contributions of the cerebral hemispheres to emotional processing. Frontiers in Human Neuroscience, 8, 230. doi: 10.3389/fnhum.2014.00230.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Smith, N. A., Gibilisco, C. R., Meisinger, R. E., & Hankey, M. (2013). Asymmetry in infants’ selective attention to facial features during visual processing of infant-directed speech. Frontiers in Psychology, 4, 601. doi: 10.3389/fpsyg.2013.00601.PubMedPubMedCentralGoogle Scholar
  136. Streri, A. (2002). Hand preference in 4-month-old infants: Global or local processing of objects in the haptic mode. Current Psychology Letters, 7, 39–50.Google Scholar
  137. Streri, A., & de Hevia, M. D. (2015). Manual lateralization in infancy. Frontiers in Psychology, 5, 1575. doi: 10.3389/fpsyg.2014.01575.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Streri, A., & Gentaz, E. (2004). Crossmodal recognition of shape from hand to eyes and handedness in human newborns. Neuropsychologia, 42, 1365–1369.PubMedCrossRefGoogle Scholar
  139. Sun, T., Patoine, C., Abu-Khalil, A., Visvader, J., Sum, E., Cherry, T. J., et al. (2005). Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science, 308, 1794–1798.Google Scholar
  140. Talelli, P., Ewas, A., Waddingham, W., Rothwell, J. C., & Ward, N. S. (2008). Neuro correlates of age-related changes in cortical neurophysiology. NeuroImage, 40, 1772–1781.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Turken, A. U., & Dronkers, N. F. (2011). The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analyses. Frontiers in Systems Neuroscience, 5, 1. doi: 10.3389/fnsys.2011.00001.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Van Dongen, S., Galis, F., Broek, C. T., Heikinheimo, K., Wijnaendts, L. C. D., Delen, S., et al. (2014). When right differs from left: Human limb directional asymmetry emerges during very early development. Laterality, 19, 591–601.Google Scholar
  143. Vauclair, J., & Cochet, H. (2013). Hand preference for pointing and language development in toddlers. Developmental Psychobiology, 55, 757–765.PubMedCrossRefGoogle Scholar
  144. Ververs, I. A. P., de Vries, J. I. P., van Geijn, H. P., & Hopkins, B. (1994). Prenatal head position from 12 to 38 weeks. 1. Developmental aspects. Early Human Development, 39, 83–91.PubMedCrossRefGoogle Scholar
  145. Vidal, J., Mills, T., Pang, E. W., & Taylor, M. J. (2012). Response inhibition in adults and teenagers: Spatiotemporal differences in prefrontal cortex. Brain and Cognition, 79, 49–59.PubMedCrossRefGoogle Scholar
  146. Vingerhoets, G., Acke, F., Alderweireldt, A. S., Nys, J., Vandemaele, P., & Achten, E. (2012). Cerebral lateralization of praxis in right- and left-handedness: Same pattern, different strength. Human Brain Mapping, 33, 763–777.PubMedCrossRefGoogle Scholar
  147. Wechsler, D. (1997). Wechsler Adult Intelligence Test administration and scoring manual. San Antonio, TX: The Psychological Corporation.Google Scholar
  148. Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio, TX: The Psychological Corporation.Google Scholar
  149. Wilbourn, M. P., Gottfried, A. W., & Kee, D. W. (2011). Consistency of hand-preference across the early years: Long-term relationship to verbal intelligence and reading achievement in girls. Developmental Psychology, 47, 931–942.PubMedCrossRefGoogle Scholar
  150. Wright, L., & Hardie, S. M. (2011). “Not ready to sort it yet”: Revised reinforcement sensitivity theory (rRST) predicts left-handed behavioral inhibition during a manual sorting task. Laterality, 16, 753–767.PubMedGoogle Scholar
  151. Yaakoby-Rotem, S., & Geva, R. (2014). Asymmetric attention networks: The case of children. Journal of the International Neuropsychological Society, 20, 434–443.PubMedCrossRefGoogle Scholar
  152. Young, G. (2011). Development and causality: Neo-Piagetian perspectives. New York: Springer Science + Business Media.CrossRefGoogle Scholar
  153. Young, G., & Gagnon, M. (1990). Neonatal laterality, birth stress, familial sinistrality, and left brain inhibition. Developmental Neuropsychology, 6, 127–150.CrossRefGoogle Scholar
  154. Yu, V. Y., MacDonald, M. J., Oh, A., Hua, G. N., De Nil, L. F., & Pang, E. W. (2014). Age-related sex differences in language lateralization: A magnetoencephalography study in children. Developmental Psychology, 50, 2276–2284.PubMedCrossRefGoogle Scholar
  155. Zangl, R., & Mills, D. L. (2007). Increased brain activity to infant-directed speech in 6- and 13-month-old infants. Infancy, 11, 31–62.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gerald Young
    • 1
  1. 1.TorontoCanada

Personalised recommendations