Advertisement

Nature and Nurture: Evolution and Complexities

  • Gerald Young
Chapter

Abstract

Evolutionary psychology has been presented as a unifying force in psychology. In this chapter, I emphasize that, in adapting a systems perspective in which evolution is considered as one primary factor, a pathway can be laid down toward the unification of psychology. Tinbergen’s four questions are still seminal for the field (adaptive function, phylogeny, ontogeny, mechanism). They can serve to create an integrative meta-model of behavioral causality along with the biopsychosocial model, NLDST, and related models. The NLDST gives one axis of integration in these regards through its related concept of complexity.

A more integrated process of evolution with other models would consider the influence of niche, culture, development, and person. As emphasized in the approach of niche construction, organisms are active, casual agents in their own evolution.

Life history theory indicates that evolution constructs each developmental period as adaptive. This model is consistent with the notions that development affords flexibility and that evolution is informed by optimization.

Social genomics indicates that the genome is fluid, and that it is a metagenome. The socioaffective environment gets “under the skin,” as in epigenetics; but moreso—it gets “onto the genome.” For example, social rejection can create social signals of even a short-term immediate nature that have long-lasting molecular imprints that affect health through effects on the HPA axis and also on inflammatory responses.

Overall, the concept of evolution is evolving, as is the concept of genetic influence on behavior. Both need to adopt a broader framework in which the environment is included in a systems framework. For example, the field needs to integrate social genomics with evolution, and ask how social genomics has influenced evolution. Already, epigenesis has been shown to have transgenerational effects and the same might be true of social genomics, for example, through epigenetic and related processes. Similarly, if there might be transgenerational effects through epigenesis and perhaps through social genomics, one could ask to what extent the field of evolution should consider better how the environment has gotten in our forebears under their skin and onto their genome (and subsequently ours).

Keywords

Natural Selection Sympathetic Nervous System Telomere Length Niche Construction Inclusive Fitness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-V (5th ed.). Washington, DC: Author.Google Scholar
  2. Antoni, M. H., Lutgendorf, S. K., Blomberg, B., Stagl, J., Carver, C. S., Lechner, S., et al. (2012). Transcriptional modulation of human leukocytes by cognitive-behavioral stress management in women undergoing treatment for breast cancer. Biological Psychiatry, 71, 366–372.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Badcock, P. B. (2012). Evolutionary systems theory: A unifying meta-theory of psychological science. Review of General Psychology, 16, 10–23.CrossRefGoogle Scholar
  4. Barlow, D. H., Ellard, K. K., Fairholme, C., Farchione, T. J., Boisseau, C., Allen, L., et al. (2011). Unified protocol for the transdiagnostic treatment of emotional disorders. New York: Oxford University Press.Google Scholar
  5. Barlow, D. H., Ellard, K. K., Sauer-Zavala, S., Bullis, J. R., & Carl, J. R. (2014). The origins of trait neuroticism. Perspectives on Psychological Science, 9, 481–496.PubMedCrossRefGoogle Scholar
  6. Barlow, D. H., Sauer-Zavala, S., Carl, J. R., Bullis, J. R., & Ellard, K. K. (2014). The nature, diagnosis, and treatment of neuroticism: Back to the future. Clinical Psychological Science, 2, 344–365.CrossRefGoogle Scholar
  7. Bates, T. C., Lewis, G. J., & Weiss, A. (2013). Childhood socioeconomic status amplifies genetic effects on adult intelligence. Psychological Science, 24, 2111–2116.PubMedCrossRefGoogle Scholar
  8. Belsky, J., & Pluess, M. (2009). The nature (and nurture?) of plasticity in early human development. Perspectives on Psychological Science, 4, 345–351.PubMedCrossRefGoogle Scholar
  9. Benke, K. S., Nivard, M. G., Velders, F. P., Walters, R. K., Pappa, I., Scheet, P. A., et al. (2014). A genome-wide association meta-analysis of preschool internalizing problems. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 667–676.Google Scholar
  10. Bieling, P. J., Hawley, L. L., Bloch, R. T., Corcoran, K. M., Levitan, R. D., Young, L. T., et al. (2012). Treatment-specific changes in decentering following mindfulness-based cognitive therapy versus antidepressant medication or placebo for prevention of depressive relapse. Journal of Consulting and Clinical Psychology, 80, 365–372.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bjorklund, D. F. (2006). Mother knows best: Epigenetic inheritance, maternal effects, and the evolution of human intelligence. Developmental Review, 26, 213–242.CrossRefGoogle Scholar
  12. Bjorklund, D. F., & Ellis, B. J. (2014). Children, childhood, and development in evolutionary perspective. Developmental Review, 34, 225–264.CrossRefGoogle Scholar
  13. Bjorklund, D. F., & Pellegrini, A. D. (2002). The origins of human nature: Evolutionary developmental psychology. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  14. Black, D. S., Cole, S. W., Irwin, M. R., Breen, E., St Cyr, N. M., Nazarian, N., et al. (2012). Yogic meditation reverses NF-kappaB and IRF-related transcriptome dynamics in leukocytes of family demential caregivers in a randomized controlled trial. Psychoneuroendocrinology, 38, 348–355.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bower, J. E., Greendale, G., Crosswell, A. D., Garet, D., Sternlieb, B., Ganz, P. A., et al. (2014). Yoga reduces inflammatory signaling in fatigued breast cancer survivors: A randomized controlled trial. Psychoneuroendocrinology, 43, 20–29.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271–301.PubMedCrossRefGoogle Scholar
  17. Briley, D. A., & Tucker-Drob, E. M. (2014). Genetic and environmental continuity in personality development: A meta-analysis. Psychological Bulletin, 140, 1303–1331.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Buss, D. M. (1995). Evolutionary psychology: A new paradigm for psychological science. Psychological Inquiry, 6, 1–30.CrossRefGoogle Scholar
  19. Buss, D. M. (2004). Evolutionary psychology: The new science of the mind. New York: Allyn & Bacon.Google Scholar
  20. Caporael, L. R. (2001). Evolutionary psychology: Toward a unifying theory and a hybrid science. Annual Review of Psychology, 52, 607–628.PubMedCrossRefGoogle Scholar
  21. Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H.-L., Israel, S., et al. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2, 119–137.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Causey, K., Gardiner, A., & Bjorklund, D. F. (2008). Evolutionary developmental psychology and the role of plasticity in ontogeny and phylogeny. Psychological Inquiry, 19, 27–30.CrossRefGoogle Scholar
  23. Chisholm, J. (1990). Life-history perspectives on human development. In G. Butterworth & P. Bryant (Eds.), Causes of development: Interdisciplinary perspectives (pp. 238–258). Hertfordshire, UK: Harvester Wheatsheaf.Google Scholar
  24. Cohen, L., Cole, S. W., Sood, A. K., Prinsloo, S., Kirschbaum, C., Arevalo, J. M. G., et al. (2012). Depressive symptoms and cortisol rhythmicity predict survival in patients with renal cell carcinoma: Role of inflammatory signaling. PLoS ONE, 7, e42324. doi: 10.1371/journal.pone.0042324.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cole, S. W. (2009). Social regulation of human gene expression. Current Directions in Psychological Science, 18, 132–137.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cole, S. W. (2010). Elevating the perspective on human stress genomics. Psychoneuroendocrinology, 35, 955–962.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cole, S. W. (2011). Socioenvironmental effects on gene expression. In K. S. Kendler, S. R. Jaffee, & D. Romer (Eds.), The dynamic genome and mental health: The role of genes and environments in youth development (pp. 195–225). New York: Oxford University Press.Google Scholar
  28. Cole, S. W. (2014). Human social genomics. PLoS Genetics, 10, e1004601. doi: 10.1371/journal.pgen.1004601.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cole, S. W., Arevalo, J., Takahashi, R., Sloan, E. K., Lutgendorf, S., Sood, A. K., et al. (2010). Computational identification of gene-social environment interaction at the human IL6 locus. Proceedings of the National Academy of Sciences, USA, 107, 5681–5686.Google Scholar
  30. Cole, S. W., Hawkley, L. C., Arevalo, J. M., Sung, C. Y., Rose, R. M., & Cacioppo, J. T. (2007). Social regulation of gene expression in human leukocytes. Genome Biology, 8, R189. doi: 10.1186/gb-2007-8-9-r189.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cole, S. W., Hawkley, L. C., Arevalo, J. M., & Cacioppo, J. T. (2011). Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes. Proceedings of the National Academy of Sciences, USA, 108, 3080–3085.Google Scholar
  32. Darwin, C. (1859). On origin of species: By means of natural selection, on the preservation of favored races in the struggle for life. London: John Murray.Google Scholar
  33. Deary, I. J. (2012). Intelligence. Annual Review of Psychology, 63, 453–482.PubMedCrossRefGoogle Scholar
  34. Eccleston, M. (2011). In utero exposure to maternal stress: Effects of the September 11th terrorist attacks in New York City on birth and early schooling outcomes. Cambridge, MA: Harvard University Press.Google Scholar
  35. Ellis, B. J., Shirtcliff, E. A., Boyce, W. T., Deardorff, J., & Essex, M. J. (2011). Quality of early family relationships and the timing and tempo of puberty: Effects depend on biological sensitivity to context. Development and Psychopathology, 23, 85–99.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Epel, E. S., Puterman, E., Lin, J., Blackburn, E., Lazaro, A., & Mendes, W. B. (2013). Wandering minds and aging cells. Clinical Psychological Science, 1, 75–83.CrossRefGoogle Scholar
  37. Eysenck, H. J. (1947). Dimensions of personality. Oxford, UK: Kegan Paul.Google Scholar
  38. Flynn, E. G., Laland, K. N., Kendal, R. L., & Kendal, J. R. (2013). Developmental niche construction. Developmental Science, 16, 296–313.PubMedCrossRefGoogle Scholar
  39. Fragaszy, D. (2012). Community resources for learning: How capuchin monkeys construct technical traditions. Biological Theory, 6, 231–240.CrossRefGoogle Scholar
  40. Frankenhuis, W. E., Panchanathan, K., & Barrett, H. C. (2013). Bridging development systems theory and evolutionary psychology using dynamic optimization. Developmental Science, 16, 584–598.PubMedCrossRefGoogle Scholar
  41. Geary, D. C., & Bjorklund, D. F. (2000). Evolutionary developmental psychology. Child Development, 71, 57–65.PubMedCrossRefGoogle Scholar
  42. Gergely, G., & Csibra, G. (2013). Natural pedagogy. In M. R. Banaji & S. A. Gelman (Eds.), Navigating the social world: What infants, children, and other species can teach us (social cognition and social neuroscience) (pp. 127–132). Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  43. Goldhaber, D. (2012). The nature-nurture debates: Bridging the gap. New York: Cambridge University Press.CrossRefGoogle Scholar
  44. Gottlieb, G. (2007). Probabilistic epigenesis. Developmental Science, 10, 1–11.PubMedCrossRefGoogle Scholar
  45. Haier, R. J., Karama, S., Leyba, L., & Jung, R. E. (2009). MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Research Notes, 2, 174. doi: 10.1186/1756-0500-2-174.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Haken, H. (1983). Synergetics: An introduction: Nonequilibrium phase transitions and self-organization in physics, chemistry, and biology (3rd ed.). Berlin, Germany: Springer.Google Scholar
  47. Hoelzer, G. A., Smith, E., & Pepper, J. W. (2006). On the logical relationship between natural selection and self-organization. Journal of Evolutionary Biology, 19, 1785–1794.PubMedCrossRefGoogle Scholar
  48. Hogan, J. A. (1994). The concept of cause in the study of behavior. In J. A. Hogan & J. J. Bolhuis (Eds.), Causal mechanisms of behavioral development (pp. 3–15). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  49. Hogan, J. A., & Bolhuis, J. J. (1994). Causal mechanisms of behavioral development. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  50. Irwin, M. R., Olmstead, R., Breen, E., Witarama, T., Carrillo, C., Sadeghi, N., et al. (2014). Tai chi reduces cellular and genomic markers of inflammation in breast cancer survivors with insomnia. Journal of the National Cancer Institute Monographs, 50, 295–301.CrossRefGoogle Scholar
  51. Irwin, M. R., Wang, M., Campomayor, C. O., Collado-Hidalgo, A., & Cole, S. (2006). Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Archives of Internal Medicine, 166, 1756–1762.PubMedCrossRefGoogle Scholar
  52. Jablonka, E., & Lamb, M. J. (2007). Précis of evolution in four dimensions. Behavioral and Brain Sciences, 30, 353–392.PubMedGoogle Scholar
  53. Jacobs, T. L., Epel, E. S., Lin, J., Blackburn, E. H., Wolkowitz, O. M., Bridwell, D. A., et al. (2011). Intensive meditation training, immune cell telomerase activity, and psychological mediators. Psychoneuroendocrinology, 36, 664–681.PubMedCrossRefGoogle Scholar
  54. Jaremka, L. M., Fagundes, C. P., Peng, J., Bennett, J. M., Glaser, R., Malarkey, W. B., et al. (2013). Loneliness promotes inflammation during acute stress. Psychological Science, 24, 1089–1097.PubMedCrossRefGoogle Scholar
  55. Kan, K.-J., Wicherts, J. M., Doland, C. V., & van der Maas, H. L. J. (2013). On the nature and nurture of intelligence and specific cognitive abilities: The more heritable, the more culture dependent. Psychological Science, 24, 2420–2428.PubMedCrossRefGoogle Scholar
  56. Karmiloff-Smith, A., Casey, B. J., Massand, E., Tomalski, P., & Thomas, M. S. C. (2014). Environmental and genetic influences on neurocognitive development: The importance of multiple methodologies and time-dependent intervention. Clinical Psychological Science, 2, 628–637.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kauffman, S. (1993). The origins of order: Self-organization and selection in evolution. New York: Oxford University Press.Google Scholar
  58. Kenrick, D. T., Maner, J. K., Butner, J., Li, N. P., Becker, D. V., & Schaller, M. (2002). Dynamical evolutionary psychology: Mapping the domains of the new interactionist paradigm. Personality and Social Psychology Review, 6, 347–356.CrossRefGoogle Scholar
  59. Kim, H. D., Shay, T., O’Shea, E. K., & Regev, A. (2009). Transcriptional regulatory circuits: Predicting numbers from alphabets. Science, 325, 429–432.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Klironomos, F. D., Berg, J., & Collins, S. (2013). How epigenetic mutations can affect genetic evolution: Model and mechanism. Bioessays, 35, 571–578.PubMedCrossRefGoogle Scholar
  61. Kovas, Y., Voronin, I., Kaydalov, A., Malykh, S. B., Dale, P. S., & Plomin, R. (2013). Literacy and numeracy are more heritable than intelligence in primary school. Psychological Science, 24, 2048–2056.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Laceulle, O. M., Vollebergh, W. A. M., & Ormel, J. (2015). The structure of psychopathology in adolescence: Replication of a general psychopathology factor in the TRAILS study. Clinical Psychological Science, 3, 850–860.Google Scholar
  63. Laland, K. (2014). On evolutionary causes and evolutionary processes. Behavioral Processes. http://dx.doi.org/10.1016/j.beproc.2014.05.008.
  64. Laland, K. N., Sterelny, K., Odling-Smee, J., Hoppitt, W., & Uller, T. (2011). Cause and effect in biology revisited: Is Mayr’s proximate-ultimate dichotomy still useful? Science, 334, 1512–1516.PubMedCrossRefGoogle Scholar
  65. Lamm, E., & Jablonka, E. (2008). The nurture of nature: Hereditary plasticity in evolution. Philosophical Psychology, 21, 305–319.CrossRefGoogle Scholar
  66. Lavretsky, H., Epel, E. S., Siddarth, P., Nazarian, N., Cyr, N. S., Khalsa, D. S., et al. (2013). A pilot study of yogic meditation for family dementia caregivers with depressive symptoms: Effects on mental health, cognition, and telomerase activity. International Journal of Geriatric Psychiatry, 28, 57–65.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lewis, M. D. (2000). The promise of dynamic systems approaches for an integrated account of human development. Child Development, 71, 36–43.PubMedCrossRefGoogle Scholar
  68. Lewis, M. D. (2005). Bridging emotion theory and neurobiology through dynamic systems modeling. Behavioral and Brain Sciences, 28, 169–245.PubMedGoogle Scholar
  69. Li, S.-C. (2003). Biocultural orchestration of development plasticity across levels: The interplay of biology and culture in shaping the mind and behavior across the life span. Psychological Bulletin, 129, 171–194.PubMedCrossRefGoogle Scholar
  70. Li, S.-C. (2013). Lifespan development of neuromodulation of adaptive control and motivation as an ontogenetic mechanism for developmental niche construction. Developmental Science, 16, 317–319.PubMedCrossRefGoogle Scholar
  71. Lickliter, R., & Honeycutt, H. (2003). Developmental dynamics: Toward a biologically plausible evolutionary psychology. Psychological Bulletin, 129, 819–835.PubMedCrossRefGoogle Scholar
  72. Lukeš, J., Archibald, J. M., Keeling, P. J., Doolittle, W. F., & Gray, M. W. (2011). How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life, 63, 528–537.PubMedCrossRefGoogle Scholar
  73. Manuck, S. B., Craig, A. E., Flory, J. D., Halder, I., & Ferrell, R. E. (2011). Reported early family environment covaries with menarcheal age as a function of polymorphic variation in estrogen receptor-a. Developmental and Psychopathology, 23, 69–83.CrossRefGoogle Scholar
  74. McShea, D. W., & Brandon, R. N. (2010). Biology’s first law: The tendency for diversity and complexity to increase in evolutionary systems. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  75. Mendizabal, I., Keller, T. E., Zeng, J., & Yi, S. V. (2014). Epigenetics and evolution. Integrative and Comparative Biology, 54, 31–42.PubMedCrossRefGoogle Scholar
  76. Miller, G. E., Murphy, M. L. M., Cashman, R., Ma, R., Arevalo, J. M. G., Kobor, M. S., et al. (2014). Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers. Brain, Behavior, and Immunity, 41, 191–199.PubMedCrossRefGoogle Scholar
  77. Murphy, M. L. M., Slavich, G. M., Rohleder, N., & Miller, G. E. (2013). Targeted rejection triggers differential pro- and anti-inflammatory gene expression in adolescents as a function of social status. Clinical Psychological Science, 1, 30–40.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nisbett, R. E., Aronson, J., Blair, C., Dickens, W., Flynn, J., Halpern, D. F., et al. (2012). Intelligence: New findings and theoretical developments. American Psychologist, 67, 130–159.PubMedCrossRefGoogle Scholar
  79. O’Connor, M. F., Schultze-Florey, C. R., Irwin, M. R., Arevalo, J. M., & Cole, S. W. (2014). Divergent gene expression responses to complicated grief and non-complicated grief. Brain, Behavior, and Immunity, 37, 78–83.PubMedPubMedCentralCrossRefGoogle Scholar
  80. O’Donovan, A., Sun, B., Cole, S., Rempel, H., Lenoci, M., Pulliam, L., et al. (2011). Transcriptional control of monocyte gene expression in post-traumatic stress disorder. Disease Markers, 30, 123–132.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Partridge, T., & Greenberg, G. (2010). Contemporary ideas in physics and biology in Gottlieb’s psychology. In K. E. Hood, C. T. Halpern, G. Greenberg, & R. Lerner (Eds.), Handbook of developmental science, behavior, and genetics (pp. 166–202). Malden, MA: Wiley Blackwell.CrossRefGoogle Scholar
  82. Ploeger, A. (2010). Evolutionary psychology as a metatheory for the social sciences. Integral Review, 6, 164–174.Google Scholar
  83. Ploeger, A., Van Der Maas, H. J. L., & Raijmakers, M. E. J. (2008). Is evolutionary psychology a metatheory for psychology? A discussion of four major issues in psychology from an evolutionary developmental perspective. Psychological Inquiry, 19, 1–18.CrossRefGoogle Scholar
  84. Plomin, R., & Deary, I. J. (2015). Genetics and intelligence differences: Five special findings. Molecular Psychiatry, 20, 98–108.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Prigogine, I., & Stengers, M. (1997). The end of certainty: Time, chaos, and the new laws of nature. New York: Free Press.Google Scholar
  86. Protzko, J., Aronson, J., & Blair, C. (2013). How to make a young child smarter: Evidence from the database of raising intelligence. Perspectives on Psychological Science, 8, 25–40.PubMedCrossRefGoogle Scholar
  87. Puterman, E., & Epel, E. (2012). An intricate dance: Life experience, multisystem resiliency, and rate of telomere decline throughout the lifespan. Social and Personality Psychology Compass, 6, 807–825.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Puterman, E., Lin, J., Blackburn, E., O’Donovan, A., Adler, N., & Epel, E. (2010). The power of exercise: Buffering the effect of chronic stress on telomere length. PLoS One, 5, e10837. doi: 10.1371/journal.pone.0010837.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rice, F., Harold, G. T., Boivin, J., van den Bree, M., Hay, D. F., & Thapar, A. (2010). The links between prenatal stress and offspring development and psychopathology: Disentangling environmental and inherited influences. Psychological Medicine, 40, 335–345.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Richerson, P., Baldini, R., Bell, A., Demps, K., Frost, K., Hillis, V., et al. (2014). Cultural group selection plays an essential role in explaining human cooperation: A sketch of the evidence. Behavioral and Brain Sciences, 28, 1–71.CrossRefGoogle Scholar
  91. Sameroff, A. (2010). A unified theory of development: A dialectic integration of nature and nurture. Child Development, 81, 6–22.PubMedCrossRefGoogle Scholar
  92. Scott-Phillips, T. C., Dickins, T. E., & West, S. A. (2011). Evolutionary theory and the ultimate-proximate distinction of the human behavioral sciences. Perspectives on Psychological Science, 6, 38–47.PubMedCrossRefGoogle Scholar
  93. Shackelford, T. K., & Liddle, J. R. (2014). Understanding the mind from an evolutionary perspective: An overview of evolutionary psychology. Wiley Interdisciplinary Reviews: Cognitive Science, 5, 247–260.PubMedCrossRefGoogle Scholar
  94. Sheldon, K. M. (2011). Consilience within the biopsychosocial system. Psychological Inquiry, 22, 52–65.CrossRefGoogle Scholar
  95. Sheldon, K. M., Cheng, C., & Hilpert, J. (2011). Understanding well-being and optimal functioning: Applying the multilevel personality in context (MPIC) model. Psychological Inquiry, 22, 1–16.CrossRefGoogle Scholar
  96. Skinner, M. K. (2011). Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics, 6, 838–842.PubMedCrossRefGoogle Scholar
  97. Skinner, M. K., Gurerrero-Bosagna, C., Haque, M. M., Nilsson, E. E., Koop, J. A. H., Knutie, S. A., et al. (2014). Epigenetic and the evolution of Darwin’s finches. Genome Biology and Evolution, 6, 1972–1989.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Slavich, G. M., & Cole, S. W. (2013). The emerging field of human social genomics. Clinical Psychological Science, 1, 331–348.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Smith, L. B., & Thelen, E. (2003). Development as a dynamic system. Trends in Cognitive Science, 7, 343–348.CrossRefGoogle Scholar
  100. Sterelny, K. (2012). The evolved apprentice. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  101. Sternberg, R. J. (2012). Intelligence. Wiley Interdisciplinary Reviews: Cognitive Science, 3, 501–511.PubMedGoogle Scholar
  102. Sternberg, R. J. (2014). The development of adaptive competence: Why cultural psychology is necessary and not just nice. Developmental Review, 34, 208–224.CrossRefGoogle Scholar
  103. Stochl, J., Khandaker, G. M., Lewis, G., Perez, J., Goodyer, I. M., Zammit, S., et al. (2015). Mood, anxiety, and psychotic phenomena measure a common psychopathological factor. Psychological Medicine, 45, 1483–1493.PubMedCrossRefGoogle Scholar
  104. Tinbergen, N. (1963). On aims and methods in ethology. Zeitschrift für Tierpsychologie, 20, 410–433.CrossRefGoogle Scholar
  105. Trahan, L. H., Stuebing, K. K., Fletcher, J. M., & Hiscock, M. (2014). The Flynn effect: A meta-analysis. Psychological Bulletin, 140, 1332–1360.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Tucker-Drob, E. M., & Briley, D. A. (2014). Continuity of genetic and environmental influences on cognition across the life span: A meta-analysis of longitudinal twin and adoption studies. Psychological Bulletin, 140, 949–979.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Vukasović, T., & Bratko, D. (2015). Heritability of personality: A meta-analysis of behavioral genetic studies. Psychological Bulletin, 141, 769–785.PubMedCrossRefGoogle Scholar
  108. West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford, UK: Oxford University Press.Google Scholar
  109. Wheeler, M., & Clark, A. (2008). Culture, embodiment and genes: Unravelling the triple helix. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 3563–3575.CrossRefGoogle Scholar
  110. Witherington, D. C. (2007). The dynamic systems approach as metatheory for developmental psychology. Human Development, 50, 127–153.CrossRefGoogle Scholar
  111. Young, G. (2014). Malingering, feigning, and response bias in psychiatric/ psychological injury: Implications for practice and court. Dordrecht, Netherlands: Springer Science + Business Media.Google Scholar
  112. Zimmer, C. (2013). The surprising origins of life’s complexity: Scientists are exploring how organisms can evolve elaborate structures without Darwinian selection. Scientific American, 84–89.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gerald Young
    • 1
  1. 1.TorontoCanada

Personalised recommendations