Weak Measurement and Feedback in Superconducting Quantum Circuits

  • Kater W. MurchEmail author
  • Rajamani Vijay
  • Irfan Siddiqi
Part of the Quantum Science and Technology book series (QST)


We describe the implementation of weak quantum measurements in superconducting qubits, focusing specifically on transmon type devices in the circuit quantum electrodynamics architecture. To access this regime, the readout cavity is probed with on average a single microwave photon. Such low-level signals are detected using near quantum-noise-limited superconducting parametric amplifiers. Weak measurements yield partial information about the quantum state, and correspondingly do not completely project the qubit onto an eigenstate. As such, we use the measurement record to either sequentially reconstruct the quantum state at a given time, yielding a quantum trajectory, or to close a direct quantum feedback loop, stabilizing Rabi oscillations indefinitely.


Coherent State Entangle State Projective Measurement Qubit State Weak Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010)Google Scholar
  2. 2.
    K. Jacobs, D.A. Steck, Contemp. Phys. 47, 279 (2006)CrossRefADSGoogle Scholar
  3. 3.
    T. Brun, Am. J. Phys. 70, 719 (2002)CrossRefADSGoogle Scholar
  4. 4.
    M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  5. 5.
    J.P. Groen, D. Ristè, L. Tornberg, J. Cramer, P.C. de Groot, T. Picot, G. Johansson, L. DiCarlo, Phys. Rev. Lett. 111, 090506 (2013)Google Scholar
  6. 6.
    G.A. Smith, A. Silberfarb, I.H. Deutsch, P.S. Jessen, Phys. Rev. Lett. 97, 180403 (2006)Google Scholar
  7. 7.
    J.P. Groen, D. Ristè, L. Tornberg, J. Cramer, P.C. de Groot, T. Picot, G. Johansson, L. DiCarlo, Phys. Rev. Lett. 111, 090506 (2013)Google Scholar
  8. 8.
    A. Blais, R.S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 69(6), 062320 (2004)Google Scholar
  9. 9.
    M.A. Castellanos-Beltran, K.D. Irwin, G.C. Hilton, L.R. Vale, K.W. Lehnert, Nat. Phys. 4, 929 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Hatridge, R. Vijay, D.H. Slichter, J. Clarke, I. Siddiqi, Phys. Rev. B 83, 134501 (2011)Google Scholar
  11. 11.
    P. Berman (ed.), Cavity Quantum Electrodynamics (Academic Press, Boston, 1994)Google Scholar
  12. 12.
    A. Wallraff, D.I. Schuster, A. Blais1, L. Frunzio, R.S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431, 162 (2004)Google Scholar
  13. 13.
    H. Paik, D.I. Schuster, L.S. Bishop, G. Kirchmair, G. Catelani, A.P. Sears, B.R. Johnson, M.J. Reagor, L. Frunzio, L.I. Glazman, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Phys. Rev. Lett. 107, 240501 (2011)CrossRefADSGoogle Scholar
  14. 14.
    N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V.E. Manucharyan, L. Frunzio, D.E. Prober, R.J. Schoelkopf, S.M. Girvin, M.H. Devoret, Nature 465(7294), 64 (2010)Google Scholar
  15. 15.
    R. Vijay, M.H. Devoret, I. Siddiqi, Rev. Sci. Instrum. 80(11), 111101 (2009)CrossRefADSGoogle Scholar
  16. 16.
    R. Vijay, C. Macklin, D.H. Slichter, S.J. Weber, K.W. Murch, R. Naik, A.N. Korotkov, I. Siddiqi, Nature 490, 77 (2012)CrossRefADSGoogle Scholar
  17. 17.
    K.W. Murch, S.J. Weber, C. Macklin, I. Siddiqi, Nature 502, 211 (2013)CrossRefADSGoogle Scholar
  18. 18.
    A.N. Korotkov (2011). arXiv:1111.4016
  19. 19.
    M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K.M. Sliwa, B. Abdo, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, M.H. Devoret, Science 339(6116), 178 (2013)CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    H. Carmichael, An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993)zbMATHGoogle Scholar
  21. 21.
    C. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2004)zbMATHGoogle Scholar
  22. 22.
    J. Dalibard, Y. Castin, K. Mølmer, Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68(5), 580–583 (1992)Google Scholar
  23. 23.
    C. Gardiner, A. Parkins, P. Zoller, Wave-function quantum stochastic differential equations and quantum-jump simulation methods. Phys. Rev. A 46(7), 4363–4381 (1992)Google Scholar
  24. 24.
    R. Schack, T.A. Brun, I.C. Percival, J. Phys. A 28, 5401 (1995)CrossRefMathSciNetzbMATHADSGoogle Scholar
  25. 25.
    D. Tan, J. Weber, S.I. Siddiqi, K. Mølmer, W. Murch, K. Phys, Rev. Lett. 114, 090403 (2015)Google Scholar
  26. 26.
    A. Chantasri, J. Dressel, A.N. Jordan, Phys. Rev. A 88, 042110 (2013)Google Scholar
  27. 27.
    S.J. Weber, A. Chantasri, J. Dressel, A.N. Jordan, K.W. Murch, I. Siddiqi, Nature 511, 570–573 (2014)CrossRefADSGoogle Scholar
  28. 28.
    S. Watanabe, Rev. Mod. Phys. 27, 179 (1955)Google Scholar
  29. 29.
    Y. Aharonov, P.G. Bergmann, J.L. Lebowitz, Phys. Rev. 134, B1410 (1964)Google Scholar
  30. 30.
    Y. Aharonov, S. Popescu, J. Tollaksen, Phys. Today 63, 27 (2010)CrossRefGoogle Scholar
  31. 31.
    Y. Aharonov, S. Popescu, J. Tollaksen, Phys. Today 64, 62 (2011)CrossRefADSGoogle Scholar
  32. 32.
    S. Gammelmark, B. Julsgaard, K. Mølmer, Phys. Rev. Lett. 111, 160401 (2013)Google Scholar
  33. 33.
    T. Rybarczyk, S. Gerlich, B. Peaudecerf, M. Penasa, B. Julsgaard, K.M. lmer, S. Gleyzes, M. Brune, J.M. Raimond, S. Haroche, I. Dotsenko (2014) arXiv:1409.0958
  34. 34.
    R. Ruskov, A.N. Korotkov, Phys. Rev. B 66, 041401 (2002)Google Scholar
  35. 35.
    C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, G. Sebastien, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J. Raimond, S. Haroche, Nature 477, 73 (2011)Google Scholar
  36. 36.
    C. Ahn, A.C. Doherty, A.J. Landahl, Phys. Rev. A 65(4, Part A), 042301 (2002)Google Scholar
  37. 37.
    L. Tornberg, G. Johansson, Phys. Rev. A 82, 012329 (2010)Google Scholar
  38. 38.
    D.H. Slichter, R. Vijay, S.J. Weber, S. Boutin, M. Boissonneault, J.M. Gambetta, A. Blais, I. Siddiqi, Phys. Rev. Lett. 109, 153601 (2012)Google Scholar
  39. 39.
    H.F. Hofmann, G. Mahler, O. Hess, Phys. Rev. A 57, 4877 (1998)Google Scholar
  40. 40.
    J. Wang, H.M. Wiseman, Phys. Rev. A 64, 063810 (2001)Google Scholar
  41. 41.
    G.G. Gillett, R.B. Dalton, B.P. Lanyon, M.P. Almeida, M. Barbieri, G.J. Pryde, J.L. O’Brien, K.J. Resch, S.D. Bartlett, A.G. White, Phys. Rev. Lett. 104, 080503 (2010)Google Scholar
  42. 42.
    R. Ruskov, A.N. Korotkov, Phys. Rev. B 67, 241305 (2003)Google Scholar
  43. 43.
    J. Combes, K. Jacobs, Phys. Rev. Lett. 96, 010504 (2006)Google Scholar
  44. 44.
    K. Jacobs, Quantum Inf. Comput. 7(1), 127 (2007)MathSciNetzbMATHGoogle Scholar
  45. 45.
    R.L. Cook, P.J. Martin, J.M. Geremia, Nature 446, 774 (2007)CrossRefADSGoogle Scholar
  46. 46.
    L. Ranzani, J. Aumentado, New J. Phys. 17(2), 023024 (2015)CrossRefADSGoogle Scholar
  47. 47.
    S. Khan, R. Vijay, I. Siddiqi, A.A. Clerk, New J. Phys. 16(11), 113032 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kater W. Murch
    • 1
    Email author
  • Rajamani Vijay
    • 2
  • Irfan Siddiqi
    • 3
  1. 1.Department of PhysicsWashington UniversitySt. LouisUSA
  2. 2.Tata Institute of Fundamental Research, Department of Condensed Matter Physics & Materials ScienceMumbaiIndia
  3. 3.Quantum Nanoelectronics Laboratory, Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations