Advertisement

Score Level Fusion of Multibiometrics Using Local Phase Array

  • Luis Rafael Marval PérezEmail author
  • Shoichiro Aoyama
  • Koichi Ito
  • Takafumi Aoki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9315)

Abstract

Local phase array for biometric recognition have demonstrated efficient performance in face, palmprint and finger knuckle recognition. If the matching score for each trait is calculated by one matcher using local phase array, the size of the system can be reduced and the simple score level fusion can be used to exhibit good performance for person authentication. In this paper, we consider the score level fusion of face, iris, palmprint, and finger knuckle whose matching scores are calculated using local phase array. Through a set of experiments using public databases, we demonstrate effectiveness of local phase array for multibiometric recognition compared with the combination of the state-of-the-art recognition algorithm for each trait.

Keywords

Multibiometrics Score level fusion Local phase array 

References

  1. 1.
  2. 2.
    Iris Challenge Evaluation (ICE). http://www.nist.gov/itl/iad/ig/ice.cfm
  3. 3.
  4. 4.
    Ahonen, T., Rahtu, E., Ojansivu, V., Heikkilä, J.: Recognition of blurred faces using local phase quantization. In: Proceedings of the International Conference on Pattern Recognition, pp. 1–4, December 2008Google Scholar
  5. 5.
    Aoyama, S., Ito, K., Aoki, T.: Similarity measure using local phase feature and its application to biometric recognition. In: Proceedings of IEEE Compututer Society Conference on Compututer Vision and Pattern Recognition Workshops, pp. 180–187, June 2013Google Scholar
  6. 6.
    Ito, K., Nakajima, H., Kobayashi, K., Aoki, T., Higuchi, T.: A fingerprint matching algorithm using phase-only correlation. IEICE Trans. Fundam. E87–A(3), 682–691 (2004)Google Scholar
  7. 7.
    Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric system. Pattern Recogn. 38(12), 2270–2285 (2005)CrossRefGoogle Scholar
  8. 8.
    Jain, A., Flynn, P., Ross, A.: Handbook of Biometrics. Springer, New York (2008)CrossRefGoogle Scholar
  9. 9.
    Phillips, P.J., Moon, H.J., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  10. 10.
    Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer, New York (2006)Google Scholar
  11. 11.
    Sun, Z., Tan, T.: Ordinal measures for iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2211–2226 (2009)CrossRefGoogle Scholar
  12. 12.
    Zhang, L., Zhang, L., Zhang, D., Zhu, H.: Ensemble of local and global information for finger-knuckle-print recognition. Pattern Recogn. 44, 1990–1998 (2011)CrossRefGoogle Scholar
  13. 13.
    Zhao, Q., Bu, W., Wu, X.: SIFT-based image alignment for contactless palmprint verification. In: Proceedings of International Conference on Biometrics, pp. 1–6, June 2013Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Luis Rafael Marval Pérez
    • 1
    Email author
  • Shoichiro Aoyama
    • 1
  • Koichi Ito
    • 1
  • Takafumi Aoki
    • 1
  1. 1.Graduate School of Information ScienceTohoku UniversitySendai-shiJapan

Personalised recommendations