Pacific Rim Conference on Multimedia

Advances in Multimedia Information Processing -- PCM 2015 pp 601-610 | Cite as

Light Field Editing Based on Reparameterization

  • Hongbo Ao
  • Yongbing Zhang
  • Adrian Jarabo
  • Belen Masia
  • Yebin Liu
  • Diego Gutierrez
  • Qionghai Dai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9314)

Abstract

Edit propagation algorithms are a powerful tool for performing complex edits with a few coarse strokes. However, current methods fail when dealing with light fields, since these methods do not account for view-consistency and due to the large size of data that needs to be handled. In this work we propose a new scalable algorithm for light field edit propagation, based on reparametrizing the input light field so that the coherence in the angular domain of the edits is preserved. Then, we handle the large size and dimensionality of the light field by using a downsampling-upsampling approach, where the edits are propagated in a reduced version of the light field, and then upsampled to the original resolution. We demonstrate that our method improves angular consistency in several experimental results.

Keywords

Light field Edit propagation Reparameterization  Clustering 

Notes

Acknowledgements

The project is supported by the National key foundation for exploring scientific instrument No. 2013YQ140517 and partially supported by the National Natural Science Foundation of China under Grants 61170195, U1201255 & U1301257, the Spanish Ministry of Science and Technology (project LIGHTSLICE) and the BBVA Foundation. Diego Gutierrez is additionally supported by a Google Faculty Research Award. Belen Masia is partially supported by the Max Planck Center for Visual Computing and Communication.

References

  1. 1.
    An, X., Pellacini, F.: Appprop: all-pairs appearance-space edit propagation. ACM Trans. Graph. (TOG) 27(3), 40 (2008)CrossRefGoogle Scholar
  2. 2.
    Ao, H., Zhang, Y., Dai, Q.: Image colorization using hybrid domain transform. In: ICASSP, January 2015Google Scholar
  3. 3.
    Chen, B., Ofek, E., Shum, H.Y., Levoy, M.: Interactive deformation of light fields. In: Proceedings of the I3D 2005, pp. 139–146 (2005)Google Scholar
  4. 4.
    Chen, X., Zou, D., Li, J., Cao, X., Zhao, Q., Zhang, H.: Sparse dictionary learning for edit propagation of high-resolution images. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2854–2861. IEEE (2014)Google Scholar
  5. 5.
    Chen, X., Zou, D., Zhao, Q., Tan, P.: Manifold preserving edit propagation. ACM Trans. Graph. (TOG) 31(6), 132 (2012)Google Scholar
  6. 6.
    Jarabo, A., Masia, B., Bousseau, A., Pellacini, F., Gutierrez, D.: How do people edit light fields? ACM Trans. Graph. 33(4), 146:1–146:10 (2014)CrossRefGoogle Scholar
  7. 7.
    Jarabo, A., Masia, B., Gutierrez, D.: Efficient propagation of light field edits. In: Proceedings of the SIACG 2011 (2011)Google Scholar
  8. 8.
    Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Trans. Graph. (TOG) 26, 96 (2007). ACMCrossRefGoogle Scholar
  9. 9.
    Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. (TOG) 23, 689–694 (2004). ACMCrossRefGoogle Scholar
  10. 10.
    Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42. ACM (1996)Google Scholar
  11. 11.
    Li, Y., Ju, T., Hu, S.M.: Instant propagation of sparse edits on images and videos. In: Computer Graphics Forum, vol. 29, pp. 2049–2054. Wiley Online Library (2010)Google Scholar
  12. 12.
    Masia, B., Jarabo, A., Gutierrez, D.: Favored workflows in light field editing. In: CGVCVIP (2014)Google Scholar
  13. 13.
    Masia, B., Wetzstein, G., Didyk, P., Gutierrez, D.: A survey on computational displays: pushing the boundaries of optics, computation and perception. Comput. Graph. 37, 1012–1038 (2013)CrossRefGoogle Scholar
  14. 14.
    Seitz, S.M., Kutulakos, K.N.: Plenoptic image editing. Int. J. Comput. Vision 48(2), 115–129 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Xu, K., Li, Y., Ju, T., Hu, S.M., Liu, T.Q.: Efficient affinity-based edit propagation using kd tree. ACM Trans. Graph. (TOG) 28, 118 (2009). ACMGoogle Scholar
  16. 16.
    Xu, L., Yan, Q., Jia, J.: A sparse control model for image and video editing. ACM Trans. Graph. (TOG) 32(6), 197 (2013)Google Scholar
  17. 17.
    Žalik, K.R.: An efficient k-means clustering algorithm. Pattern Recogn. Lett. 29(9), 1385–1391 (2008)CrossRefGoogle Scholar
  18. 18.
    Zhang, Z., Wang, L., Guo, B., Shum, H.Y.: Feature-based light field morphing. ACM Trans. Graph. 21(3) (2002). http://doi.acm.org/10.1145/566654.566602

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hongbo Ao
    • 1
  • Yongbing Zhang
    • 1
  • Adrian Jarabo
    • 3
  • Belen Masia
    • 3
    • 4
  • Yebin Liu
    • 2
  • Diego Gutierrez
    • 3
  • Qionghai Dai
    • 2
  1. 1.Graduate School at Shenzhen, Tsinghua UniversityShenzhenChina
  2. 2.Department of AutomationTsinghua UniversityBeijingChina
  3. 3.Universidad de ZaragozaZaragozaSpain
  4. 4.MPI InformatikSaarbrückenGermany

Personalised recommendations