Advertisement

Marginal Fisher Regression Classification for Face Recognition

  • Zhong Ji
  • Yunlong Yu
  • Yanwei Pang
  • Yingming Li
  • Zhongfei Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9314)

Abstract

This paper presents a novel marginal Fisher regression classification (MFRC) method by incorporating the ideas of marginal Fisher analysis (MFA) and linear regression classification (LRC). The MFRC aims at minimizing the within-class compactness over the between-class separability to find an optimal embedding matrix for the LRC so that the LRC on that subspace achieves a high discrimination for classification. Specifically, the within-class compactness is measured with the sum of distances between each sample and its neighbors within the same class with the LRC, and the between-class separability is characterized as the sum of distances between margin points and their neighboring points from different classes with the LRC. Therefore, the MFRC embodies the ideas of the LRC, Fisher analysis and manifold learning. Experiments on the FERET, PIE and AR datasets demonstrate the effectiveness of the MFRC.

Keywords

Face recognition Nearest subspace classification Linear regression classification Manifold learning 

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) under Grant 2014CB340400, the National Natural Science Foundation of China under Grant 61271325, Grant 61472273, and the Elite scholar Program of Tianjin University under Grant 2015XRG-0014.

References

  1. 1.
    Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)CrossRefGoogle Scholar
  2. 2.
    Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010)CrossRefGoogle Scholar
  3. 3.
    Wright, J., Yang, A., Ganesh, A., et al.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRefGoogle Scholar
  4. 4.
    Huang, S., Yang, J.: Improved principal component regression for face recognition under illumination variations. IEEE Sig. Process. Lett. 19(4), 179–182 (2012)CrossRefGoogle Scholar
  5. 5.
    Naseem, I., Togneri, R., Bennamoun, M.: Robust regression for face recognition. Pattern Recogn. 45(1), 104–118 (2012)CrossRefGoogle Scholar
  6. 6.
    Huang, S., Yang, J.: Linear discriminant regression classification for face recognition. IEEE Sig. Process. Lett. 20(1), 91–94 (2013)CrossRefGoogle Scholar
  7. 7.
    He, J., Ding, L., Jiang, L., et al.: Kernel ridge regression classification. In: IEEE International Joint Conference on Neural Networks, pp. 2263–2267 (2014)Google Scholar
  8. 8.
    He, X., Yan, S., Hu, Y., et al.: Face recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)CrossRefGoogle Scholar
  9. 9.
    Yan, S., Xu, D., Zhang, B., et al.: Graph embedding: a general framework for dimensionality reduction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 830–837 (2005)Google Scholar
  10. 10.
    Lu, J., Tan, Y.P., Wang, G.: Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 39–51 (2013)CrossRefGoogle Scholar
  11. 11.
    Brown, D., Li, H., Gao, Y.: Locality-regularized linear regression for face recognition. In: IEEE International Conference on Pattern Recognition, pp. 1586–1589 (2012)Google Scholar
  12. 12.
    Li, X., Jiang, T., Zhang, K.: Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Netw. 17(1), 157–165 (2006)CrossRefGoogle Scholar
  13. 13.
    Phillips, P., Moon, H., Rauss, P., et al.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  14. 14.
    Martinez, A., Benavente, R.: The AR face database. CVC Technical Report, 24 (1998)Google Scholar
  15. 15.
    Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991)Google Scholar
  16. 16.
    Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)CrossRefGoogle Scholar
  17. 17.
    Cheng, J., Liu, Q., Lu, H., et al.: Supervised kernel locality preserving projections for face recognition. Neurocomputing 67, 443–449 (2005)CrossRefGoogle Scholar
  18. 18.
    Martinez, A., Kak, A.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 228–233 (2001)CrossRefGoogle Scholar
  19. 19.
    Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–51 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zhong Ji
    • 1
    • 2
  • Yunlong Yu
    • 1
  • Yanwei Pang
    • 1
  • Yingming Li
    • 2
  • Zhongfei Zhang
    • 2
  1. 1.School of Electronic Information EngineeringTianjin UniversityTianjinChina
  2. 2.Department of Computer ScienceState University of New YorkBinghamtonUSA

Personalised recommendations