Advertisement

A Decentralized Approach to Network-Aware Service Composition

  • Valeria Cardellini
  • Mirko D’Angelo
  • Vincenzo Grassi
  • Moreno Marzolla
  • Raffaela Mirandola
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9306)

Abstract

Dynamic service composition represents a key feature for service-based applications operating in dynamic and large scale network environments, as it allows leveraging the variety of offered services, and to cope with their volatility. However, the high number of services and the lack of central control pose a significant challenge for the scalability and effectiveness of the composition process. We address this problem by proposing a fully decentralized approach to service composition, based on the use of a gossip protocol to support information dissemination and decision making. The proposed system builds and maintains a composition of services that fulfills both functional and non functional requirements. For the latter, we focus in particular on requirements concerning the composite service completion time, taking into account both the response time and the impact of network latency. Simulation experiments show that our solution converges quickly to a feasible composition and can self-adapt to dynamic changes concerning both service availability and network latency.

Keywords

Peer to peer systems Service composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, T., Srivastava, A.: Minimizing waiting time for service composition: a frictional approach. In: Proc. of IEEE ICWS 2013, pp. 268–275 (2013)Google Scholar
  2. 2.
    Atluri, V., Chun, S.A., Mukkamala, R., Mazzoleni, P.: A decentralized execution model for inter-organizational workflows. Distrib. Parallel Databases 22(1) (2007)Google Scholar
  3. 3.
    Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Presti, F.L., Mirandola, R.: MOSES: A framework for QoS driven runtime adaptation of service-oriented systems. IEEE Trans. Software Eng. 38(5), 1138–1159 (2012)CrossRefGoogle Scholar
  4. 4.
    Chafle, G.B., Chandra, S., Mann, V., Nanda, M.G.: Decentralized orchestration of composite web services. In: Proc. of WWW Alt. 2004, pp. 134–143. ACM (2004)Google Scholar
  5. 5.
    Cruz Torres, M.H., Holvoet, T.: Self-adaptive resilient service composition. In: Proc. of 2nd Int’l Conf. on Cloud and Autonomic Computing (2014)Google Scholar
  6. 6.
    Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network coordinate system. In: Proc. of ACM SIGCOMM 2004, pp. 15–26 (2004)Google Scholar
  7. 7.
    Furno, A., Zimeo, E.: Self-scaling cooperative discovery of service compositions in unstructured P2P networks. J. Parallel Distrib. Comput. 74(10), 2994–3025 (2014)CrossRefGoogle Scholar
  8. 8.
    Grassi, V., Marzolla, M., Mirandola, R.: Qos-aware fully decentralized service assembly. In: Proc. of SEAMS 2013, pp. 53–62. IEEE (2013)Google Scholar
  9. 9.
    Groba, C., Clarke, S.: Opportunistic service composition in dynamic ad hoc environments. IEEE Trans. Serv. Comput. 7, 642–653 (2014)CrossRefGoogle Scholar
  10. 10.
    Immonen, A., Pakkala, D.: A survey of methods and approaches for reliable dynamic service compositions. Serv. Oriented Comput. Appl. 8(2), 129–158 (2014)CrossRefGoogle Scholar
  11. 11.
    Jelasity, M., Kowalczyk, W., van Steen, M.: Newscast computing. Tech. Rep. IR-CS-006.03, Dept. of Computer Science, Vrije Universiteit (2003)Google Scholar
  12. 12.
    Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proc. of SFCS 2003, pp. 482–491 (2003)Google Scholar
  13. 13.
    Kermarrec, A.M., Massoulié, L., Ganesh, A.J.: Probabilistic reliable dissemination in large-scale systems. IEEE Trans. Parallel Distrib. Syst. 14(3), 248–258 (2003)CrossRefGoogle Scholar
  14. 14.
    Klein, A., Ishikawa, F., Honiden, S.: SanGA: A self-adaptive network-aware approach to service composition. IEEE Trans. Serv. Comput. 7(3), 452–464 (2014)CrossRefGoogle Scholar
  15. 15.
    Kwon, G., Candan, K.S.: DANS: decentralized, autonomous, and network-wide service delivery and multimedia workflow processing. In: Proc. of ACM MULTIMEDIA 2006, pp. 549–558 (2006)Google Scholar
  16. 16.
    Montresor, A., Jelasity, M.: PeerSim: a scalable P2P simulator. In: Proc. of 9th Int’l Conf. on Peer-to-Peer Computing, pp. 99–100 (2009)Google Scholar
  17. 17.
    Mostafa, A., Zhang, M., Bai, Q.: Trustworthy stigmergic service composition and adaptation in decentralized environments. IEEE Trans. Serv. Comput. (2015)Google Scholar
  18. 18.
    Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  19. 19.
    Repantis, T., Gu, X., Kalogeraki, V.: Qos-aware shared component composition for distributed stream processing systems. IEEE Trans. Parallel Distrib. Syst. 20(7), 968–982 (2009)CrossRefGoogle Scholar
  20. 20.
    Schuhmann, S., Herrmann, K., Rothermel, K., Boshmaf, Y.: Adaptive composition of distributed pervasive applications in heterogeneous environments. ACM Trans. Auton. Adapt. Syst. 8(2), 10:1–10:21 (2013)CrossRefGoogle Scholar
  21. 21.
    Sykes, D., Magee, J., Kramer, J.: FlashMob: distributed adaptive self-assembly. In: Proc. of SEAMS 2011, pp. 100–109. ACM (2011)Google Scholar
  22. 22.
    Val, E.D., Rebollo, M., Vasirani, M., Fernández, A.: Utility-based mechanism for structural self-organization in service-oriented MAS. ACM Trans. Auton. Adapt. Syst. 9(3), 12:1–12:24 (2014)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Valeria Cardellini
    • 1
  • Mirko D’Angelo
    • 1
  • Vincenzo Grassi
    • 1
  • Moreno Marzolla
    • 2
  • Raffaela Mirandola
    • 3
  1. 1.Dip. di Ingegneria Civile e Ingegneria InformaticaUniversità di Roma Tor VergataRomeItaly
  2. 2.Dip. di Informatica–Scienza e IngegneriaUniversità di BolognaBolognaItaly
  3. 3.Dip. di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanItaly

Personalised recommendations