Remote Collaboration, Decision Support, and On-Demand Medical Image Analysis for Acute Stroke Care

  • Renan Sales BarrosEmail author
  • Jordi Borst
  • Steven Kleynenberg
  • Céline Badr
  • Rama-Rao Ganji
  • Hubrecht de Bliek
  • Landry-Stéphane Zeng-Eyindanga
  • Henk van den Brink
  • Charles Majoie
  • Henk Marquering
  • Sílvia Delgado Olabarriaga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9306)


Acute stroke is the leading cause of disabilities and the fourth cause of death worldwide. The treatment of stroke patients often requires fast collaboration between medical experts and fast analysis and sharing of large amounts of medical data, especially image data. In this situation, cloud technologies provide a potentially cost-effective way to optimize management of stroke patients and, consequently, improve patient outcome. This paper presents a cloud-based platform for Medical Distributed Utilization of Services & Applications (MEDUSA). This platform aims at improving current acute care settings by allowing fast medical data exchange, advanced processing of medical image data, automated decision support, and remote collaboration between physicians in a secure and responsive virtual space. We describe a prototype implemented in the MEDUSA platform for supporting the treatment of acute stroke patients. As the initial evaluation illustrates, this prototype improves several aspects of current stroke care and has the potential to play an important role in the care management of acute stroke patients.


Acute care Cloud computing Decision support High performance computing Medical image analysis Remote collaboration Stroke Telemedicine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Go, A.S., et al.: Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation 127(1), e1–e240 (2013)CrossRefGoogle Scholar
  2. 2.
    Hallett, S., Parr, G., McClean, S., McConnell, A., Majeed, B.: Cloud-based healthcare: towards a SLA compliant network aware solution for medical image processing. In: Cloud Computing, pp. 219–223 (2012)Google Scholar
  3. 3.
    Alonso-Calvo, R., Crespo, J., Maojo, V., Muñoz, A., García-Remesal, M., Pérez-Rey, D.: Cloud computing service for managing large medical image data-sets using balanced collaborative agents. In: Advances on Practical Applications of Agents and Multiagent Systems, pp. 265–270 (2011)Google Scholar
  4. 4.
    Shini, S.G., Thomas, T., Chithraranjan, K.: Cloud based medical image exchange-security challenges. Procedia Engineering 38, 3454–3461 (2012)CrossRefGoogle Scholar
  5. 5.
    Kagadis, G.C., et al.: Cloud computing in medical imaging. Medical Physics 40(7) (2013)Google Scholar
  6. 6.
    Jeyabalaraja, V., Josephine, M.S.: Cloud Computing in Medical Diagnosis for improving Health Care Environment. International Journal of Computing Algorithm 2, 458–462 (2013)Google Scholar
  7. 7.
    Pino, C., Di Salvo, R.: A survey of cloud computing architecture and applications in health. In: ICCSEE (2013)Google Scholar
  8. 8.
    Jee, K., Kim, G.H.: Potentiality of big data in the medical sector: focus on how to reshape the healthcare system. Healthcare Informatics Research 19(2), 79–85 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Murdoch, T.B., Detsky, A.S.: The inevitable application of big data to health care. Jama 309(13), 1351–1352 (2013)CrossRefGoogle Scholar
  10. 10.
    Kanagaraj, G., Sumathi, A.C.: Proposal of an open-source cloud computing system for exchanging medical images of a hospital information system. In: TISC, pp. 144–149 (2011)Google Scholar
  11. 11.
    Yang, C.T., Chen, L.T., Chou, W.L., Wang, K.C.: Implementation of a medical image file accessing system on cloud computing. In: CSE, pp. 321–326 (2010)Google Scholar
  12. 12.
    Koufi, V., Malamateniou, F., Vassilacopoulos, G.: Ubiquitous access to cloud emergency medical services. In: ITAB, pp. 1–4 (2010)Google Scholar
  13. 13.
    Zhuang, Y., Jiang, N., Wu, Z., Li, Q., Chiu, D.K., Hu, H.: Efficient and robust large medical image retrieval in mobile cloud computing environment. Information Sciences 263, 60–86 (2014)CrossRefGoogle Scholar
  14. 14.
    Hua, G., Lei, H., Bei, X.: A cloud computing based collaborative service pattern of medical association for stroke prevention and treatment. In: MID, pp. 345–349 (2014)Google Scholar
  15. 15.
    Sharieh, S., Franek, F., Ferworn, A.: Using cloud computing for medical applications. In: Proceedings of the 15th Communications and Networking Simulation Symposium, pp. 15:1–15:7 (2012)Google Scholar
  16. 16.
    Parsonson, L., Grimm, S., Bajwa, A., Bourn, L., Bai, L.: A cloud computing medical image analysis and collaboration platform. In: Cloud Computing and Services Science, pp. 207–224 (2012)Google Scholar
  17. 17.
    Dorn, K., Ukis, V., Friese, T.: A cloud-deployed 3D medical imaging system with dynamically optimized scalability and cloud costs. In: SEAA, pp. 155–158 (2011)Google Scholar
  18. 18.
    Chiang, W.C., Lin, H.H., Wu, T.S., Chen, C.F.: Bulding a cloud service for medical image processing based on service-orient architecture. BMEI 3, 1459–1465 (2011)Google Scholar
  19. 19.
    Huang, Q., Ye, L., Yu, M., Wu, F., Liang, R.: Medical information integration based cloud computing. NCIS 1, 79–83 (2011)Google Scholar
  20. 20.
    Ojog, I., Arias-Estrada, M., Gonzalez, J., Flores, B.: A cloud scalable platform for DICOM image analysis as a tool for remote medical support. In: eTELEMED, pp. 246–249 (2013)Google Scholar
  21. 21.
    Ahn, Y.W., Cheng, A.M.K.: Autonomic computing architecture for real-time medical application running on virtual private cloud infrastructures. ACM SIGBED Review 10(2), 15 (2013)CrossRefGoogle Scholar
  22. 22.
    Holtmann, C., Müller-Gorchs, M., Rashid, A., Weidenhaupt, K., Ziegler, V., Griewing, B., Weinhardt, C.: Medical opportunities by mobile IT usage–a case study in the stroke chain of survival. In: European Conf. eHealth (2007)Google Scholar
  23. 23.
    Joveski, B., Mitrea, M., Simoens, P., Marshall, I.J., Prêteux, F., Dhoedt, B.: Semantic multimedia remote display for mobile thin clients. Multimedia systems 19(5), 455–474 (2013)CrossRefGoogle Scholar
  24. 24.
    Joveski, B., Mitrea, M., Ganji, R. R.: MPEG-4 solutions for virtualizing RDP-based applications. In: IS&T/SPIE Electronic Imaging (2014)Google Scholar
  25. 25.
    Boers, A.M., Zijlstra, I.A., Gathier, C.S., van den Berg, R., Slump, C.H., Marquering, H.A., Majoie, C.B.: Automatic Quantification of Subarachnoid Hemorrhage on Noncontrast CT. American Journal of Neuroradiology 35(12), 2279–2286 (2014)CrossRefGoogle Scholar
  26. 26.
    Santos, E.M., et al.: Development and validation of intracranial thrombus segmentation on CT angiography in patients with acute ischemic stroke. PloS One 9(7) (2014)Google Scholar
  27. 27.
    Boers, A.M., et al.: Automated cerebral infarct volume measurement in follow-up noncontrast CT scans of patients with acute ischemic stroke. American Journal of Neuroradiology 34(8), 1522–1527 (2013)CrossRefGoogle Scholar
  28. 28.
    Barros, R.S., et al.: High Performance Image Analysis of Compressed Dynamic CT Perfusion Data of Patients with Acute Ischemic Stroke. Submitted to MICCAI HPC Workshop (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Renan Sales Barros
    • 1
    Email author
  • Jordi Borst
    • 1
  • Steven Kleynenberg
    • 2
  • Céline Badr
    • 3
  • Rama-Rao Ganji
    • 4
  • Hubrecht de Bliek
    • 5
  • Landry-Stéphane Zeng-Eyindanga
    • 6
  • Henk van den Brink
    • 7
  • Charles Majoie
    • 1
  • Henk Marquering
    • 1
  • Sílvia Delgado Olabarriaga
    • 1
  1. 1.Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.SopheonMaastrichtThe Netherlands
  3. 3.PrologueLes UlisFrance
  4. 4.ARTEMIS DepartmentTelecom SudParisEvryFrance
  5. 5.Philips HealthcareEindhovenThe Netherlands
  6. 6.BullGrenobleFrance
  7. 7.TechnolutionGoudaThe Netherlands

Personalised recommendations