Advertisement

Agent Based Quality Management in Lean Manufacturing

  • Rafal Cupek
  • Huseyin Erdogan
  • Lukasz Huczala
  • Udo Wozar
  • Adam Ziebinski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9329)

Abstract

Quality Management (QM) issues are together with production costs and delivery time one of the three main pillars of Lean Manufacturing. Although, Quality Operations Management should be supported by IT Manufacturing Execution Systems (MES), in practice it is very difficult to automate QM support on MES level because of its heterarchical and unpredictable nature. There is a lack of practical models that bind QM and MES. Authors try to fill this gap by proposed agent based MES architecture for QM support. This paper shows both concept of proposed architecture and its practical realisation on the example of automotive electronics device manufacturing.

Keywords

Multi agent systems (MAS) Manufacturing execution system (MES) Quality management(QM) Lean manufacturing Signalr library 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    A Manufacturing Industry Vision 2025, European Commission (Joint Research Centre) Foresight study, Brussels (2013)Google Scholar
  3. 3.
    Anvari, A., Ismail, Y., Hojjati, S.M.H.: A study on total quality management and lean manufacturing: through lean thinking approach. World Applied Sciences Journal 12(9), 1585–1596 (2011). IDOSI, DubaiGoogle Scholar
  4. 4.
    Sui Pheng, L., Shang, G.: Bridging Western management theories and Japanese management practices: Case of the Toyota Way model. Emerald Emerging Markets Case Studies 1(1), 1–20 (2011). Emerald, Wagon LaneCrossRefGoogle Scholar
  5. 5.
    Porter, L.J., Parker, A.J.: Total quality management—the critical success factors. Total Quality Management 4(1), 13–22 (1993). Taylor & FrancisCrossRefGoogle Scholar
  6. 6.
  7. 7.
    McFarlane, D., Bussmann, S.: Holonic manufacturing control: rationales, developments and open issues. In: Deen, S.M. (ed.) Agent Based Manufacturing Advances in the Holonic Approach, pp. 303–326. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Valckenaers, P., Van Brussel, H., Hadeli, K., Bochmann, O., Saint Germain, B., Zamfirescu, C.: On the design of emergent systems: an investigation of integration and interoperability issues. Engineering Applications of Artificial Intelligence 16(4), 377–393 (2003). Elsevier B.V, AmsterdamCrossRefGoogle Scholar
  9. 9.
    Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture for Holonic manufacturing systems: PROSA. Computers in Industry 37(3), 255–274 (1998). Elsevier B.V, AmsterdamCrossRefGoogle Scholar
  10. 10.
    Rannanjärvi, L., Heikkilä, T.: Software development for Holonic manufacturing systems. Computers in Industry 37(3), 233–253 (1998). Elsevier B.V, AmsterdamCrossRefGoogle Scholar
  11. 11.
    Borangiu, T., Gilbert, P., Ivanescu, N.A., Rosu, A.: An implementing framework for Holonic manufacturing control with multiple robot-vision stations. Engineering Applications of Artificial Intelligence 22(4), 505–521 (2009). Elsevier B.V, AmsterdamCrossRefGoogle Scholar
  12. 12.
    Blanc, P., Demongodin, I., Castagna, P.: A Holonic approach for manufacturing execution system design. An Industrial Application Engineering Applications of Artificial Intelligence 21(3), 315–330 (2008). Elsevier B.V, AmsterdamCrossRefGoogle Scholar
  13. 13.
    Diltis, D., Boyd, N., Whorms, H.: The evolution of control architectures for automated manufacturing systems. Journal of Manufacturing Systems 10(1), 63–79 (1991). Elsevier B.V, AmsterdamGoogle Scholar
  14. 14.
    Aissani, N., Beldjilali, B., Trentesaux, D.: Dynamic scheduling of maintenance tasks in the petroleum industry: A reinforcement approach. Engineering Applications of Artificial Intelligence 22(7), 1089–1103 (2009). Elsevier B.V, AmsterdamCrossRefGoogle Scholar
  15. 15.
    Marchetta, M.G., Mayer, F., Forradellas, R.Q.: A reference framework following a proactive approach for product lifecycle management. Computers in Industry 62, 672–683 (2011). Elsevier B.V, AmsterdamCrossRefGoogle Scholar
  16. 16.
    Yildirim, O., Kardas, G.: A multi-agent system for minimizing energy costs in cement production. Computers in Industry 65(7), 1076–1084 (2014). Elsevier B.V, AmsterdamCrossRefGoogle Scholar
  17. 17.
  18. 18.
    Cupek, R., Huczala, L.: OData for service-oriented business applications. In: 2015 IEEE International Conference on Industrial Technology, IEEE Xplore on line digital library (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rafal Cupek
    • 1
  • Huseyin Erdogan
    • 2
  • Lukasz Huczala
    • 1
  • Udo Wozar
    • 2
  • Adam Ziebinski
    • 1
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland
  2. 2.Conti Temic Microelectronic GmbHIngolstadtGermany

Personalised recommendations