Plant-Herbivore Interactions in the Era of Big Data

  • Linda L. WallingEmail author
  • Isgouhi Kaloshian


With the reduced costs, enhanced sensitivities and increased accessibility, the OMICs strategies of modern science are providing new insights and opportunities to understand the evolution and dynamics of plant-pest interactions. The deployment of high-throughput methods to study variation at the genome, transcriptome, proteome, and metabolome levels has allowed in-depth investigation of previously intractable questions in the field of plant-herbivore interactions. Discovery of the regulatory mechanisms within a single organism (plant, herbivore, herbivore endosymbiont, or resident microbe) or amongst multiple organisms as they interact is now possible, allowing the complexity of herbivore adaptation to plant hosts and host plant defense strategies to be revealed and providing momentum for the development of new gene-based mechanisms for controlling herbivore damage. Here the current status and challenges of OMICs technologies as they relate to plant-feeding insects important in our ecosystems, agriculture and forestry, their natural enemies, and their microbiomes are described. The genomics of plant-feeding or –pollinating insects, perspectives on the triumvirate of functional genomics (transcriptomics, proteomics, and metabolomics), as well as the increasing importance of integrating OMICs strategies to address contemporary biological questions are highlighted.


Aphid Species Salivary Protein Potato Aphid OMICs Technology Insect Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer, S. E., Li, P. W., Hoskins, R. A., Galle, R. F., George, R. A., Lewis, S. E., Richards, S., Ashburner, M., Henderson, S. N., Sutton, G. G., Wortman, J. R., Yandell, M. D., Zhang, Q., Chen, L. X., Brandon, R. C., Rogers, Y. H., Blazej, R. G., Champe, M., Pfeiffer, B. D., Wan, K. H., Doyle, C., Baxter, E. G., Helt, G., Nelson, C. R., Gabor, G. L., Abril, J. F., Agbayani, A., An, H. J., Andrews-Pfannkoch, C., Baldwin, D., Ballew, R. M., Basu, A., Baxendale, J., Bayraktaroglu, L., Beasley, E. M., Beeson, K. Y., Benos, P. V., Berman, B. P., Bhandari, D., Bolshakov, S., Borkova, D., Botchan, M. R., Bouck, J., Brokstein, P., Brottier, P., Burtis, K. C., Busam, D. A., Butler, H., Cadieu, E., Center, A., Chandra, I., Cherry, J. M., Cawley, S., Dahlke, C., Davenport, L. B., Davies, P., de Pablos, B., Delcher, A., Deng, Z., Mays, A. D., Dew, I., Dietz, S. M., Dodson, K., Doup, L. E., Downes, M., Dugan-Rocha, S., Dunkov, B. C., Dunn, P., Durbin, K. J., Evangelista, C. C., Ferraz, C., Ferriera, S., Fleischmann, W., Fosler, C., Gabrielian, A. E., Garg, N. S., Gelbart, W. M., Glasser, K., Glodek, A., Gong, F., Gorrell, J. H., Gu, Z., Guan, P., Harris, M., Harris, N. L., Harvey, D., Heiman, T. J., Hernandez, J. R., Houck, J., Hostin, D., Houston, K. A., Howland, T. J., Wei, M. H., Ibegwam, C., Jalali, M., Kalush, F., Karpen, G. H., Ke, Z., Kennison, J. A., Ketchum, K. A., Kimmel, B. E., Kodira, C. D., Kraft, C., Kravitz, S., Kulp, D., Lai, Z., Lasko, P., Lei, Y., Levitsky, A. A., Li, J., Li, Z., Liang, Y., Lin, X., Liu, X., Mattei, B., McIntosh, T. C., McLeod, M. P., McPherson, D., Merkulov, G., Milshina, N. V., Mobarry, C., Morris, J., Moshrefi, A., Mount, S. M., Moy, M., Murphy, B., Murphy, L., Muzny, D. M., Nelson, D. L., Nelson, D. R., Nelson, K. A., Nixon, K., Nusskern, D. R., Pacleb, J. M., Palazzolo, M., Pittman, G. S., Pan, S., Pollard, J., Puri, V., Reese, M. G., Reinert, K., Remington, K., Saunders, R. D., Scheeler, F., Shen, H., Shue, B. C., Siden-Kiamos, I., Simpson, M., Skupski, M. P., Smith, T., Spier, E., Spradling, A. C., Stapleton, M., Strong, R., Sun, E., Svirskas, R., Tector, C., Turner, R., Venter, E., Wang, A. H., Wang, X., Wang, Z. Y., Wassarman, D. A., Weinstock, G. M., Weissenbach, J., Williams, S. M., Woodage, T., Worley, K. C., Wu, D., Yang, S., Yao, Q. A., Ye, J., Yeh, R. F., Zaveri, J. S., Zhan, M., Zhang, G., Zhao, Q., Zheng, L., Zheng, X. H., Zhong, F. N., Zhong, W., Zhou, X., Zhu, S., Zhu, X., Smith, H. O., Gibbs, R. A., Myers, E. W., Rubin, G. M., & Venter, J. C. (2000). The genome sequence of Drosophila melanogaster. Science, 287, 2185–2195.PubMedCrossRefGoogle Scholar
  2. Aggarwal, R., Subramanyam, S., Zhao, C. Y., Chen, M. S., Harris, M. O., & Stuart, J. J. (2014). Avirulence effector discovery in a plant galling and plant parasitic arthropod, the Hessian Fly (Mayetiola destructor). PloS One, 9, e100958.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmad, S., Veyrat, N., Gordon-Weeks, R., Zhang, Y., Martin, J., Smart, L., Glauser, G., Erb, M., Flors, V., Frey, M., & Ton, J. (2011). Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiology, 157, 317–327.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ahola, V., Lehtonen, R., Somervuo, P., Salmela, L., Koskinen, P., Rastas, P., Välimäki, N., Paulin, L., Kvist, J., Wahlberg, N., Tanskanen, J., Hornett, E. A., Ferguson, L. C., Luo, S., Cao, Z., de Jong, M. A., Duplouy, A., Smolander, O.-P., Vogel, H., McCoy, R. C., Qian, K., Chong, W. S., Zhang, Q., Ahmad, F., Haukka, J. K., Joshi, A., Salojärvi, J., Wheat, C. W., Grosse-Wilde, E., Hughes, D., Katainen, R., Pitkänen, E., Ylinen, J., Waterhouse, R. M., Turunen, M., Vähärautio, A., Ojanen, S. P., Schulman, A. H., Taipale, M., Lawson, D., Ukkonen, E., Mäkinen, V., Goldsmith, M. R., Holm, L., Auvinen, P., Frilander, M. J., & Hanski, I. (2014). The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nature Communications, 5, 4737.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aliferis, K. A., Copley, T., & Jabaji, S. (2012). Gas chromatography-mass spectrometry metabolite profiling of worker honey bee (Apis mellifera L.) hemolymph for the study of Nosema ceranae infection. Journal of Insect Physiology, 58, 1349–1359.PubMedCrossRefGoogle Scholar
  6. Atamian, H. S., Chaudhary, R., Cin, V. D., Bao, E., Girke, T., & Kaloshian, I. (2013). In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Molecular Plant-Microbe Interactions, 26, 67–74.PubMedCrossRefGoogle Scholar
  7. Attaran, E., Major, I. T., Cruz, J. A., Rosa, B. A., Koo, A. J., Chen, J., Kramer, D. M., He, S. Y., & Howe, G. A. (2014). Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant Physiology, 165, 1302–1314.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bao, E., Jiang, T., & Girke, T. (2013). BRANCH: Boosting RNA-Seq assemblies with partial or related genomic sequences. Bioinformatics, 29, 1250–1259.PubMedCrossRefGoogle Scholar
  9. Bennett, R. N., & Wallsgrove, R. M. (1994). Secondary metabolites in plant defence mechanisms. The New Phytologist, 127, 617–633.CrossRefGoogle Scholar
  10. Bentur, J. S., Cheralu, C., & Rao, P. R. M. (2008). Monitoring virulence in Asian rice gall midge populations in India. Entomologia Experimentalis et Applicata, 129, 96–106.CrossRefGoogle Scholar
  11. Bermingham, J., Rabatel, A., Calevro, F., Vinuelas, J., Febvay, G., Charles, H., Douglas, A., & Wilkinson, T. (2009). Impact of host developmental age on the transcriptome of the symbiotic bacterium Buchnera aphidicola in the pea aphid (Acyrthosiphon pisum). Applied and Environmental Microbiology, 75, 7294–7297.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bino, R. J., Hall, R. D., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B. J., Mendes, P., Roessner-Tunali, U., Beale, M. H., Trethewey, R. N., Lange, B. M., Wurtele, E. S., & Sumner, L. W. (2004). Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 9, 418–425.PubMedCrossRefGoogle Scholar
  13. Biradar, S. K., Sundaram, R. M., Thirumurugan, T., Bentur, J. S., Amudhan, S., Shenoy, V. V., Mishra, B., Bennett, J., & Sarma, N. P. (2004). Identification of flanking SSR markers for a major rice gall midge resistance gene Gm1 and their validation. Theoretical and Applied Genetics, 109, 1468–1473.PubMedCrossRefGoogle Scholar
  14. Boller, T., & Felix, G. (2009). A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406.PubMedCrossRefGoogle Scholar
  15. Bonasio, R., Zhang, G., Ye, C., Mutti, N. S., Fang, X., Qin, N., Donahue, G., Yang, P., Li, Q., Li, C., Zhang, P., Huang, Z., Berger, S. L., Reinberg, D., Wang, J., & Liebig, J. (2010). Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science, 329, 1068–1071.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bonaventure, G., Gfeller, A., Proebsting, W. M., Hoertensteiner, S., Chetelat, A., Martinoia, E., & Farmer, E. E. (2007). A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. The Plant Journal, 49, 889–898.PubMedCrossRefGoogle Scholar
  17. Bos, J. I., Prince, D., Pitino, M., Maffei, M. E., Win, J., & Hogenhout, S. A. (2010). A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genetics, 6, e1001216.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Boykin, L. M. (2014). Bemisia tabaci nomenclature: Lessons learned. Pest Management Science, 70, 1454–1459.PubMedCrossRefGoogle Scholar
  19. Brown, J. K., Lambert, G. M., HGhanim, M., Czosnek, H., & Galbraith, D. W. (2005). Nuclear DNA content of the whitefly Bemisia tabaci (Aleyrodidae: Hempitera) estimated by flow cytometry. Bulletin of Entomological Research, 95, 309–312.PubMedCrossRefGoogle Scholar
  20. Browse, J. (2009). Jasmonate passes muster: A receptor and targets for the defense hormone. Annual Review of Plant Biology, 60, 183–205.PubMedCrossRefGoogle Scholar
  21. Bruex, A., Liu, T.-Y., Krebs, M., Stierhof, Y.-D., Lohmann, J. U., Miersch, O., Wastermack, C., & Schumacher, K. (2008). Reduced V-ATPase activity in the trans-Golgi network causes oxylipin-dependent hypocotyl growth inhibition in Arabidopsis. Plant Cell, 20, 1088–1100.CrossRefGoogle Scholar
  22. Burow, M., Halkier, B. A., & Kliebenstein, D. J. (2010). Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness. Current Opinion in Plant Biology, 13, 348–353.PubMedCrossRefGoogle Scholar
  23. Buszewska-Forajta, M., Siluk, D., Struck-Lewicka, W., Raczak-Gutknecht, J., Markuszewski, M. J., & Kaliszan, R. (2014a). Identification of lipid fraction constituents from grasshopper (Chorthippus spp.) abdominal secretion with potential activity in wound healing with the use of GC-MS/MS technique. Journal of Pharmaceutical and Biomedical Analysis, 89, 56–66.PubMedCrossRefGoogle Scholar
  24. Buszewska-Forajta, M., Struck-Lewicka, W., Bujak, R., Siluk, D., & Kaliszan, R. (2014b). Determination of water-soluble components of abdominal secretion of grasshopper (Chorthippus spp.) by GC/MS/MS in search for potential wound healing agents. Chromatographia, 77, 1091–1102.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Buszewska-Forajta, M., Bujak, R., Yumba-Mpanga, A., Siluk, D., & Kaliszan, R. (2015). GC/MS technique and AMDIS software application in identification of hydrophobic compounds of grasshoppers’ abdominal secretion (Chorthippus spp.). Journal of Pharmaceutical and Biomedical Analysis, 102, 331–339.PubMedCrossRefGoogle Scholar
  26. Caillaud, C. M., & Niemeyer, H. M. (1996). Possible involvement of the phloem sealing system in the acceptance of a plant as host by an aphid. Experientia, 52, 927–931.CrossRefGoogle Scholar
  27. Cambier, V., Hance, T., & de Hoffmann, E. (2000). Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry, 53, 223–229.PubMedCrossRefGoogle Scholar
  28. Cambier, V., Hance, T., & De Hoffmann, E. (2001). Effects of 1,4-benzoxazin-3-one derivatives from maize on survival and fecundity of Metopolophium dirhodum (Walker) on artificial diet. Journal of Chemical Ecology, 27, 359–370.PubMedCrossRefGoogle Scholar
  29. Carolan, J. C., Fitzroy, C. I., Ashton, P. D., Douglas, A. E., & Wilkinson, T. L. (2009). The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics, 9, 2457–2467.PubMedCrossRefGoogle Scholar
  30. Carolan, J. C., Caragea, D., Reardon, K. T., Mutti, N. S., Dittmer, N., Pappan, K., Cui, F., Castaneto, M., Poulain, J., Dossat, C., Tagu, D., Reese, J. C., Reeck, G. R., Wilkinson, T. L., & Edwards, O. R. (2011). Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): A dual transcriptomic/proteomic approach. Journal of Proteome Research, 10, 1505–1518.PubMedCrossRefGoogle Scholar
  31. Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A., Holland, T. A., Keseler, I. M., Kothari, A., Kubo, A., Krummenacker, M., Latendresse, M., Mueller, L. A., Ong, Q., Paley, S., Subhraveti, P., Weaver, D. S., Weerasinghe, D., Zhang, P., & Karp, P. D. (2014). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Research, 42, D459–D471.PubMedCrossRefGoogle Scholar
  32. Chaston, J., & Douglas, A. E. (2012). Making the most of “omics” for symbiosis research. The Biological Bulletin, 223, 21–29.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chaudhary, R., Atamian, H. S., Shen, Z., Briggs, S. P., & Kaloshian, I. (2014). GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proceedings of the National Academy of Sciences of the United States of America, 111, 8919–8924.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chaudhary, R., Atamian, H. S., Shen, Z., Briggs, S. P., & Kaloshian, I. (2015). Potato aphid salivary proteome: Enhanced salivation using resorcinol and identification of aphid phosphoproteins. Journal of Proteome Research, 14, 1762–1778.PubMedCrossRefGoogle Scholar
  35. Chauvin, A., Caldelari, D., Wolfender, J.-L., & Farmer, E. E. (2013). Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: A role for lipoxygenase 6 in responses to long-distance wound signals. The New Phytologist, 197, 566–575.PubMedCrossRefGoogle Scholar
  36. Chintapalli, V. R., Al Bratty, M., Korzekwa, D., Watson, D. G., & Dow, J. A. T. (2013). Mapping an atlas of tissue-specific Drosophila melanogaster metabolomes by high resolution mass spectrometry. PloS One, 8, e78066.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chipman, A. D., Ferrier, D. E. K., Brena, C., Qu, J., Hughes, D. S. T., Schröder, R., Torres-Oliva, M., Znassi, N., Jiang, H., Almeida, F. C., Alonso, C. R., Apostolou, Z., Aqrawi, P., Arthur, W., Barna, J. C. J., Blankenburg, K. P., Brites, D., Capella-Gutiérrez, S., Coyle, M., Dearden, P. K., Du Pasquier, L., Duncan, E. J., Ebert, D., Eibner, C., Erikson, G., Evans, P. D., Extavour, C. G., Francisco, L., Gabaldón, T., Gillis, W. J., Goodwin-Horn, E. A., Green, J. E., Griffiths-Jones, S., Grimmelikhuijzen, C. J. P., Gubbala, S., Guigó, R., Han, Y., Hauser, F., Havlak, P., Hayden, L., Helbing, S., Holder, M., Hui, J. H. L., Hunn, J. P., Hunnekuhl, V. S., Jackson, L., Javaid, M., Jhangiani, S. N., Jiggins, F. M., Jones, T. E., Kaiser, T. S., Kalra, D., Kenny, N. J., Korchina, V., Kovar, C. L., Kraus, F. B., Lapraz, F., Lee, S. L., Lv, J., Mandapat, C., Manning, G., Mariotti, M., Mata, R., Mathew, T., Neumann, T., Newsham, I., Ngo, D. N., Ninova, M., Okwuonu, G., Ongeri, F., Palmer, W. J., Patil, S., Patraquim, P., Pham, C., Pu, L.-L., Putman, N. H., Rabouille, C., Ramos, O. M., Rhodes, A. C., Robertson, H. E., Robertson, H. M., Ronshaugen, M., Rozas, J., Saada, N., Sánchez-Gracia, A., Scherer, S. E., Schurko, A. M., Siggens, K. W., Simmons, D., Stief, A., Stolle, E., Telford, M. J., Tessmar-Raible, K., Thornton, R., van der Zee, M., von Haeseler, A., Williams, J. M., Willis, J. H., Wu, Y., Zou, X., Lawson, D., Muzny, D. M., Worley, K. C., Gibbs, R. A., Akam, M., & Richards, S. (2014). The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biology, 12, e1002005.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cilia, M., Tamborindeguy, C., Fish, T., Howe, K., Thannhauser, T. W., & Gray, S. (2011a). Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission. Journal of Virology, 85, 2148–2166.PubMedCrossRefGoogle Scholar
  39. Cilia, M., Tamborindeguy, C., Rolland, M., Howe, K., Thannhauser, T. W., & Gray, S. (2011b). Tangible benefits of the aphid Acyrthosiphon pisum genome sequencing for aphid proteomics: Enhancements in protein identification and data validation for homology-based proteomics. Journal of Insect Physiology, 57, 179–190.PubMedCrossRefGoogle Scholar
  40. Clay, N. K., Adio, A. M., Denoux, C., Jander, G., & Ausubel, F. M. (2009). Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 323, 95–101.PubMedCrossRefGoogle Scholar
  41. Colinet, H., Renault, D., Charoy-Guevel, B., & Com, E. (2012). Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre. PloS One, 7, e32606.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cong, Q., Borek, D., Otwinowski, Z., & Grishin Nick, V. (2015). Tiger swallowtail genome reveals mechanisms for speciation and caterpillar chemical defense. Cell Reports, 10, 910–919.CrossRefGoogle Scholar
  43. Consortium, T. H. G. (2012). Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature, 487, 94–98.Google Scholar
  44. Cooper, W. R., Dillwith, J. W., & Puterka, G. J. (2010). Salivary proteins of Russian wheat aphid (Hemiptera: Aphididae). Environmental Entomology, 39, 223–231.PubMedCrossRefGoogle Scholar
  45. Cooper, W. R., Dillwith, J. W., & Puterka, G. J. (2011). Comparisons of salivary proteins from five aphid (Hemiptera: Aphididae) species. Environmental Entomology, 40, 151–156.PubMedCrossRefGoogle Scholar
  46. Coquin, L., Feala, J. D., McCulloch, A. D., & Paternostro, G. (2008). Metabolomic and flux-balance analysis of age-related decline of hypoxia tolerance in Drosophila muscle tissue. Molecular Systems Biology, 4, 233. doi:
  47. Cornman, S. R., Schatz, M. C., Johnston, S. J., Chen, Y. P., Pettis, J., Hunt, G., Bourgeois, L., Elsik, C., Anderson, D., Grozinger, C. M., & Evans, J. D. (2010). Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics, 11, 602.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Cui, F., Smith, C. M., Reese, J., Edwards, O., & Reeck, G. (2012). Polymorphisms in salivary-gland transcripts of Russian wheat aphid biotypes 1 and 2. Insect Science, 19, 429–440.CrossRefGoogle Scholar
  49. Dafoe, N. J., Huffaker, A., Vaughan, M. M., Duehl, A. J., Teal, P. E., & Schmelz, E. A. (2011). Rapidly induced chemical defenses in maize stems and their effects on short-term growth of Ostrinia nubilalis. Journal of Chemical Ecology, 37, 984–991.PubMedCrossRefGoogle Scholar
  50. Davidson, G. (1964). Anopheles gambiae, a complex of species. Bulletin of the World Health Organization, 31, 625–634.PubMedPubMedCentralGoogle Scholar
  51. Davies, E., & Schuster, A. (1981). Intercellular communication in plants: Evidence for a rapidly generated, bidirectionally transmitted wound signal. Proceedings of the National Academy of Sciences of the United States of America, 78, 2422–2426.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Dengler, N. G. (2006). The shoot apical meristem and development of vascular architecture. Canadian Journal of Botany, 84, 1660–1671.CrossRefGoogle Scholar
  53. Derecka, K., Blythe, M. J., Malla, S., Genereux, D. P., Guffanti, A., Pavan, P., Moles, A., Snart, C., Ryder, T., Ortori, C. A., Barrett, D. A., Schuster, E., & Stoeger, R. (2013). Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PloS One, 8, e68191.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Douglas, A. E. (2013). Microbial brokers of insect-plant interactions revisited. Journal of Chemical Ecology, 39, 952–961.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Dutartre, L., Hilliou, F., & Feyereisen, R. (2012). Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: Gene duplications and origin of the Bx cluster. BMC Evolutionary Biology, 12, 64.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ebel, J., & Mithoefer, A. (1998). Early events in the elicitation of plant defence. Planta, 206, 335–348.CrossRefGoogle Scholar
  57. Elsik, C., Worley, K., Bennett, A., Beye, M., Camara, F., Childers, C., de Graaf, D., Debyser, G., Deng, J., Devreese, B., Elhaik, E., Evans, J., Foster, L., Graur, D., Guigo, R.; HGSC production teams, Hoff, K., Holder, M., Hudson, M., Hunt, G., Jiang, H., Joshi, V., Khetani, R., Kosarev, P., Kovar, C., Ma, J., Maleszka, R., Moritz, R., Munoz-Torres, M., & Murphy, T. (2014). Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics, 15, 86.Google Scholar
  58. Elzinga, D. A., De Vos, M., & Jander, G. (2014). Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Molecular Plant-Microbe Interactions, 27, 747–756.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Engel, P., & Moran, N. A. (2013). The gut microbiota of insects – Diversity in structure and function. FEMS Microbiology Reviews, 37, 699–735.PubMedCrossRefGoogle Scholar
  60. Facchini, P. J. (2001). Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 29–66.PubMedCrossRefGoogle Scholar
  61. Farmer, E. E., Gasperini, D., & Acosta, I. F. (2014). The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding. The New Phytologist, 204, 282–288.PubMedCrossRefGoogle Scholar
  62. Feltus, F. A. (2014). Systems genetics: A paradigm to improve discovery of candidate genes and mechanisms underlying complex traits. Plant Science, 223, 45–48.PubMedCrossRefGoogle Scholar
  63. Flint-Garcia, S. A., Thuillet, A. C., Yu, J. M., Pressoir, G., Romero, S. M., Mitchell, S. E., Doebley, J., Kresovich, S., Goodman, M. M., & Buckler, E. S. (2005). Maize association population: A high-resolution platform for quantitative trait locus dissection. The Plant Journal, 44, 1054–1064.PubMedCrossRefGoogle Scholar
  64. Fontaine, M. C., Pease, J. B., Steele, A., Waterhouse, R. M., Neafsey, D. E., Sharakhov, I. V., Jiang, X., Hall, A. B., Catteruccia, F., Kakani, E., Mitchell, S. N., Wu, Y. C., Smith, H. A., Love, R. R., Lawniczak, M. K., Slotman, M. A., Emrich, S. J., Hahn, M. W., & Besansky, N. J. (2015). Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science, 347, 1258524.PubMedCrossRefGoogle Scholar
  65. Foray, V., Desouhant, E., Voituron, Y., Larvor, V., Renault, D., Colinet, H., & Gibert, P. (2013). Does cold tolerance plasticity correlate with the thermal environment and metabolic profiles of a parasitoid wasp? Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 164, 77–83.CrossRefGoogle Scholar
  66. Francis, F., Gerkens, P., Harmel, N., Mazzucchelli, G., De Pauw, E., & Haubruge, E. (2006). Proteomics in Myzus persicae: Effect of aphid host plant switch. Insect Biochemistry and Molecular Biology, 36, 219–227.PubMedCrossRefGoogle Scholar
  67. Fukushima, A., Kusano, M., Mejia, R. F., Iwasa, M., Kobayashi, M., Hayashi, N., Watanabe-Takahashi, A., Narisawa, T., Tohge, T., Hur, M., Wurtele, E. S., Nikolau, B. J., & Saito, K. (2014). Metabolomic characterization of knockout mutants in Arabidopsis: Development of a metabolite profiling database for knockout mutants in Arabidopsis. Plant Physiology, 165, 948–961.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gaquerel, E., Gulati, J., & Baldwin, I. T. (2014). Revealing insect herbivory-induced phenolamide metabolism: From single genes to metabolic network plasticity analysis. The Plant Journal, 79, 679–692.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gershenzon, J., & Dudareva, N. (2007). The function of terpene natural products in the natural world. Nature Chemical Biology, 3, 408–414.PubMedCrossRefGoogle Scholar
  70. Ghanim, M., & Kontsedalov, S. (2009). Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Management Science, 65, 939–942.PubMedCrossRefGoogle Scholar
  71. Gilchrist, A., Shearman, D., Frommer, M., Raphael, K., Deshpande, N., Wilkins, M., Sherwin, W., & Sved, J. (2014). The draft genome of the pest tephritid fruit fly Bactrocera tryoni: Resources for the genomic analysis of hybridising species. BMC Genomics, 15, 1153.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Givovich, A., Morse, S., Cerda, H., Niemeyer, H. M., Wratten, S. D., & Edwards, P. J. (1992). Hydroxamic acid glucosides in honeydew of aphids feeding on wheat. Journal of Chemical Ecology, 18, 841–846.PubMedCrossRefGoogle Scholar
  73. Givovich, A., Sandstrom, J., Niemeyer, H. M., & Pettersson, J. (1994). Presence of a hydroxamic acid glucoside in wheat phloem sap, and its consequences for performance of Rhopalosiphum padi (L.) (Homoptera: Aphididae). Journal of Chemical Ecology, 20, 1923–1930.PubMedCrossRefGoogle Scholar
  74. Glauser, G., Dubugnon, L., Mousavi, S. A. R., Rudaz, S., Wolfender, J. L., & Farmer, E. E. (2009). Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. The Journal of Biological Chemistry, 284, 34506–34513.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Glauser, G., Marti, G., Villard, N., Doyen, G. A., Wolfender, J. L., Turlings, T. C. J., & Erb, M. (2011). Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. The Plant Journal, 68, 901–911.PubMedCrossRefGoogle Scholar
  76. Grambow, H. J., Luckge, J., Klausener, A., & Muller, E. (1986). Occurrence of 2-(2-hydroxy-4,7-dimethoxy-2h-1,4-benzoxazin-3-one)-beta-d-glucopyranoside in Triticum aestivum leaves and its conversion into 6-methoxy-benzoxazolinone. Zeitschrift für Naturforschung Section C: A Journal of Biosciences, 41, 684–690.Google Scholar
  77. Grbic, M., Van Leeuwen, T., Clark, R. M., Rombauts, S., Rouze, P., Grbic, V., Osborne, E. J., Dermauw, W., Ngoc, P. C., Ortego, F., Hernandez-Crespo, P., Diaz, I., Martinez, M., Navajas, M., Sucena, E., Magalhaes, S., Nagy, L., Pace, R. M., Djuranovic, S., Smagghe, G., Iga, M., Christiaens, O., Veenstra, J. A., Ewer, J., Villalobos, R. M., Hutter, J. L., Hudson, S. D., Velez, M., Yi, S. V., Zeng, J., Pires-daSilva, A., Roch, F., Cazaux, M., Navarro, M., Zhurov, V., Acevedo, G., Bjelica, A., Fawcett, J. A., Bonnet, E., Martens, C., Baele, G., Wissler, L., Sanchez-Rodriguez, A., Tirry, L., Blais, C., Demeestere, K., Henz, S. R., Gregory, T. R., Mathieu, J., Verdon, L., Farinelli, L., Schmutz, J., Lindquist, E., Feyereisen, R., & Van de Peer, Y. (2011). The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479, 487–492.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Gulati, J., Kim, S. G., Baldwin, I. T., & Gaquerel, E. (2013). Deciphering herbivory-induced gene-to-metabolite dynamics in Nicotiana attenuata tissues using a multifactorial approach. Plant Physiology, 162, 1042–1059.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Guo, L., Wang, S., Wu, Q., Zhou, X., Xie, W., & Zhang, Y. (2015). Flow cytometry and K-mer analysis estimates of the genome sizes of Bemisia tabaci B and Q (Hemiptera: Aleyrodidae). Frontiers in Physiology, 6.
  80. Hansen, A. K., & Degnan, P. H. (2014). Widespread expression of conserved small RNAs in small symbiont genomes. The ISME Journal, 8, 2490–2502.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Hansen, A. K., & Moran, N. A. (2011). Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proceedings of the National Academy of Sciences of the United States of America, 108, 2849–2854.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Hansen, A. K., & Moran, N. A. (2014). The impact of microbial symbionts on host plant utilization by herbivorous insects. Molecular Ecology, 23, 1473–1496.PubMedCrossRefGoogle Scholar
  83. Hao, Y., Cambron, S. E., Chen, Z., Wang, Y., Bland, D. E., Buntin, G. D., & Johnson, J. W. (2013). Characterization of new loci for Hessian fly resistance in common wheat. Theoretical and Applied Genetics, 126, 1067–1076.PubMedCrossRefGoogle Scholar
  84. Hariharan, R., Hoffman, J. M., Thomas, A. S., Soltow, Q. A., Jones, D. P., & Promislow, D. E. L. (2014). Invariance and plasticity in the Drosophila melanogaster metabolomic network in response to temperature. BMC Systems Biology, 8, 139.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Harmel, N., Letocart, E., Cherqui, A., Giordanengo, P., Mazzucchelli, G., Guillonneau, F., De Pauw, E., Haubruge, E., & Francis, F. (2008). Identification of aphid salivary proteins: A proteomic investigation of Myzus persicae. Insect Molecular Biology, 17, 165–174.PubMedCrossRefGoogle Scholar
  86. Harris, M. O., Stuart, J. J., Mohan, M., Nair, S., Lamb, R. J., & Rohfritsch, O. (2003). Grasses and gall midges: Plant defense and insect adaptation. Annual Review of Entomology, 48, 549–577.PubMedCrossRefGoogle Scholar
  87. Harris, M. O., Freeman, T. P., Rohfritsch, O., Anderson, K. G., Payne, S. A., & Moore, J. A. (2006). Virulent Hessian fly (Diptera: Cecidomyiidae) larvae induce a nutritive tissue during compatible interactions with wheat. Annals of the Entomological Society of America, 99, 305–316.CrossRefGoogle Scholar
  88. Hayward, S. A. (2014). Application of functional ‘Omics’ in environmental stress physiology: Insights, limitations, and future challenges. Current Opinion in Insect Science, 4, 35–41.PubMedCrossRefGoogle Scholar
  89. Himler, A. G., Adachi-Hagimori, T., Bergen, J. E., Kozuch, A., Kelly, S. E., Tabashnik, B. E., Chiel, E., Duckworth, V. E., Dennehy, T. J., Zchori-Fein, E., & Hunter, M. S. (2011). Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science, 332, 254–256.PubMedCrossRefGoogle Scholar
  90. Hogenhout, S. A., & Bos, J. I. B. (2011). Effector proteins that modulate plant-insect interactions. Current Opinion in Plant Biology, 14, 422–428.PubMedCrossRefGoogle Scholar
  91. Hoskins, R. A., Carlson, J. W., Wan, K. H., Park, S., Mendez, I., Galle, S. E., Booth, B. W., Pfeiffer, B. D., George, R. A., Svirskas, R., Krzywinski, M., Schein, J., Carmela Accardo, M., Damia, E., Messina, G., Mendez-Lago, M., de Pablos, B., Demakova, O. V., Andreyeva, E. N., Boldyreva, L. V., Marra, M., Carvalho, A. B., Dimitri, P., Villasante, A., Zhimulev, I. F., Rubin, G. M., Karpen, G. H., & Celniker, S. E. (2015). The Release 6 reference sequence of the Drosophila melanogaster genome. Genome Research, 25, 445–458.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Howe, G. A., & Jander, G. (2008). Plant immunity to insect herbivores. Annual Review of Plant Biology, 59, 41–66.PubMedCrossRefGoogle Scholar
  93. Huffaker, A., Kaplan, F., Vaughan, M. M., Dafoe, N. J., Ni, X., Rocca, J. R., Alborn, H. T., Teal, P. E. A., & Schmelz, E. A. (2011). Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiology, 156, 2082–2097.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Husnik, F., Nikoh, N., Koga, R., Ross, L., Duncan, R. P., Fujie, M., Tanaka, M., Satoh, N., Bachtrog, D., Wilson, A. C., von Dohlen, C. D., Fukatsu, T., & McCutcheon, J. P. (2013). Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell, 153, 1567–1578.PubMedCrossRefGoogle Scholar
  95. Jander, G. (2014). Revisiting plant-herbivore co-evolution in the molecular biology era. Annual Plant Reviews, 47, 361–384.CrossRefGoogle Scholar
  96. Jansen, J. J., Allwood, J. W., Marsden-Edwards, E., van der Putten, W. H., Goodacre, R., & van Dam, N. M. (2009). Metabolomic analysis of the interaction between plants and herbivores. Metabolomics, 5, 150–161.CrossRefGoogle Scholar
  97. Janz, N., Nylin, S., & Wahlberg, N. (2006). Diversity begets diversity: Host expansions and the diversification of plant-feeding insects. BMC Evolutionary Biology, 6, 4.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Jensen, L. M., Halkier, B. A., & Burow, M. (2014). How to discover a metabolic pathway? An update on gene identification in aliphatic glucosinolate biosynthesis, regulation and transport. Biological Chemistry, 395, 529–543.PubMedCrossRefGoogle Scholar
  99. Jing, X., Wong, A. C., Chaston, J. M., Colvin, J., McKenzie, C. L., & Douglas, A. E. (2014). The bacterial communities in plant phloem-sap-feeding insects. Molecular Ecology, 23, 1433–1444.PubMedCrossRefGoogle Scholar
  100. Kakumani, P. K., Malhotra, P., Mukherjee, S. K., & Bhatnagar, R. K. (2014). A draft genome assembly of the army worm, Spodoptera frugiperda. Genomics, 104, 134–143.PubMedCrossRefGoogle Scholar
  101. Kaloshian, I., & Walling, L. (2015). Plant immunity: connecting the dots between microbial and hemipteran immune responses. In H. Czosnek, & M. Ghanim (Eds.), Management of insect pests to agriculture: Lessons learned from deciphering their genome, transcriptome, and proteome. (chap. 9, pp. XX). Cham: Springer.Google Scholar
  102. Kang, S., Kim, H. B., Lee, H., Choi, J. Y., Heu, S., Oh, C. J., Kwon, S. I., & An, C. S. (2006). Overexpression in Arabidopsis of a plasma membrane-targeting glutamate receptor from small radish increases glutamate-mediated Ca2+ influx and delays fungal infection. Molecular Cell, 21, 418–427.Google Scholar
  103. Kant, M. R., Ament, K., Sabelis, M. W., Haring, M. A., & Schuurink, R. C. (2004). Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiology, 135, 483–495.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Keeling, C. I., Yuen, M. M., Liao, N. Y., Docking, T. R., Chan, S. K., Taylor, G. A., Palmquist, D. L., Jackman, S. D., Nguyen, A., Li, M., Henderson, H., Janes, J. K., Zhao, Y., Pandoh, P., Moore, R., Sperling, F. A., Huber, D. P., Birol, I., Jones, S. J., & Bohlmann, J. (2013). Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biology, 14, R27.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kersten, B., Ghirardo, A., Schnitzler, J.-P., Kanawati, B., Schmitt-Kopplin, P., Fladung, M., & Schroeder, H. (2013). Integrated transcriptomics and metabolomics decipher differences in the resistance of pedunculate oak to the herbivore Tortrix viridana L. BMC Genomics, 14, 737.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Kim, H. S., Murphy, T., Xia, J., Caragea, D., Park, Y., Beeman, R. W., Lorenzen, M. D., Butcher, S., Manak, J. R., & Brown, S. J. (2010). BeetleBase in 2010: Revisions to provide comprehensive genomic information for Tribolium castaneum. Nucleic Acids Research, 38, D437–D442.PubMedCrossRefGoogle Scholar
  107. Kliebenstein, D. J. (2012). Plant defense compounds: Systems approaches to metabolic analysis. Annual Review of Phytopathology, 50, 155–173.PubMedCrossRefGoogle Scholar
  108. Kliebenstein, D. J. (2014). Quantitative genetics and genomics of plant resistance to insects. Insect-Plant Interactions, 47, 235–262.CrossRefGoogle Scholar
  109. Kombrink, E. (2012). Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta, 236, 1351–1366.PubMedCrossRefGoogle Scholar
  110. Koo, A. J. K., & Howe, G. A. (2009). The wound hormone jasmonate. Phytochemistry, 70, 1571–1580.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kostal, V., Korbelova, J., Rozsypal, J., Zahradnickova, H., Cimlova, J., Tomcala, A., & Simek, P. (2011). Long-term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. PloS One, 6, e25025.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Krol, E., Mentzel, T., Chinchilla, D., Boller, T., Felix, G., Kemmerling, B., Postel, S., Arents, M., Jeworutzki, E., Al-Rasheid, K. A. S., Becker, D., & Hedrich, R. (2010). Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. The Journal of Biological Chemistry, 285, 13471–13479.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kuhn, K. L., Duan, J. J., & Hopper, K. R. (2013). Next-generation genome sequencing and assembly provides tools for phylogenetics and identification of closely related species of Spathius, parasitoids of Agrilus planipennis (emerald ash borer). Biological Control, 66, 77–82.CrossRefGoogle Scholar
  114. Lakshmi, P. V., Amudhan, S., Bindu, K. H., Cheralu, C., & Bentur, J. S. (2006). A new biotype of the Asian rice gall midge Orseolia oryzae (Diptera: Cecidomyiidae) characterized from the Warangal population in Andhra Pradesh. Indian International Journal of Tropical Insect Science, 26, 207–211.Google Scholar
  115. Lee, I. (2014). A showcase of future plant biology: moving towards next-generation plant genetics assisted by genome sequencing and systems biology. Genome Biology, 15, 305–305.Google Scholar
  116. Lenz, E. M., Hagele, B. F., Wilson, I. D., & Simpson, S. J. (2001). High resolution H-1 NMR spectroscopic studies of the composition of the haemolymph of crowd- and solitary-reared nymphs of the desert locust, Schistocerca gregaria. Molecular Biology, 32, 51–56.Google Scholar
  117. Liberman, L. M., Sozzani, R., & Benfey, P. N. (2012). Integrative systems biology: An attempt to describe a simple weed. Current Opinion in Plant Biology, 15, 162–167.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Liu, S.-S., Colvin, J., & De Barro, P. J. (2012). Species concepts as applied to the whitefly Bemisia tabaci systematics: How many species are there? Journal of Integrative Agriculture, 11, 176–186.CrossRefGoogle Scholar
  119. Lobo, N. F., Behura, S. K., Aggarwal, R., Chen, M. S., Collins, F. H., & Stuart, J. J. (2006). Genomic analysis of a 1 Mb region near the telomere of Hessian fly chromosome X2 and avirulence gene vH13. BMC Genomics, 7, 7.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Maffei, M., Bossi, S., Spiteller, D., Mithofer, A., & Boland, W. (2004). Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiology, 134, 1752–1762.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Maffei, M. E., Mithofer, A., & Boland, W. (2007). Before gene expression: Early events in plant-insect interaction. Trends in Plant Science, 12, 310–316.PubMedCrossRefGoogle Scholar
  122. Malone, M., & Stankovic, B. (1991). Surface potentials and hydraulic signals in wheat leaves following localized wounding by heat. Plant, Cell & Environment, 14, 431–436.CrossRefGoogle Scholar
  123. Manguin, S., Carnevale, P., Mouchet, J., Coosemans, M., Julvez, J., Richard-Lenoble, D., & Sircoulon, J. (2008). Biodiversity of malaria in the world (p. 428). Montrouge: John Libbey Eurotext.Google Scholar
  124. Maresh, J., Zhang, J., & Lynn, D. G. (2006). The innate immunity of maize and the dynamic chemical strategies regulating two-component signal transduction in Agrobacterium tumefaciens. ACS Chemical Biology, 1, 165–175.PubMedCrossRefGoogle Scholar
  125. McCutcheon, J. P., & Moran, N. A. (2010). Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biology and Evolution, 2, 708–718.PubMedPubMedCentralGoogle Scholar
  126. McCutcheon, J. P., & Moran, N. A. (2012). Extreme genome reduction in symbiotic bacteria. Nature Reviews Microbiology, 10, 13–26.Google Scholar
  127. McMullen, M., Frey, M., & Degenhardt, J. (2009a). Genetics and biochemistry of insect resistance in maize. In J. L. Bennetzen & S. Hake (Eds.), Handbook of maize: Its biology (pp. 271–289). New York: Springer.CrossRefGoogle Scholar
  128. McMullen, M. D., Kresovich, S., Villeda, H. S., Bradbury, P., Li, H., Sun, Q., Flint-Garcia, S., Thornsberry, J., Acharya, C., Bottoms, C., Brown, P., Browne, C., Eller, M., Guill, K., Harjes, C., Kroon, D., Lepak, N., Mitchell, S. E., Peterson, B., Pressoir, G., Romero, S., Rosas, M. O., Salvo, S., Yates, H., Hanson, M., Jones, E., Smith, S., Glaubitz, J. C., Goodman, M., Ware, D., Holland, J. B., & Buckler, E. S. (2009b). Genetic properties of the maize nested association mapping population. Science, 325, 737–740.PubMedCrossRefGoogle Scholar
  129. Meihls, L. N., Kaur, H., & Jander, G. (2012). Natural variation in maize defense against insect herbivores. Cold Spring Harbor Symposia on Quantitative Biology, 77, 269–283.PubMedCrossRefGoogle Scholar
  130. Meihls, L. N., Handrick, V., Glauser, G., Barbier, H., Kaur, H., Haribal, M. M., Lipka, A. E., Gershenzon, J., Buckler, E. S., Erb, M., Kollner, T. G., & Jander, G. (2013). Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell, 25, 2341–2355.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Mercke, P., Kappers, I. F., Verstappen, F. W., Vorst, O., Dicke, M., & Bouwmeester, H. J. (2004). Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiology, 135, 2012–2024.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Michalski, A., Damoc, E., Lange, O., Denisov, E., Nolting, D., Müller, M., Viner, R., Schwartz, J., Remes, P., Belford, M., Dunyach, J.-J., Cox, J., Horning, S., Mann, M., & Makarov, A. (2012). Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Molecular & Cellular Proteomics, 11, O111.013698.Google Scholar
  133. Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M. A., Shulaev, V., Dangl, J. L., & Mittler, R. (2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling, 2, ra45.PubMedGoogle Scholar
  134. Montllor, C. B., Maxmen, A., & Purcell, A. H. (2002). Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Entomology, 27, 189–195.CrossRefGoogle Scholar
  135. Moran, N. A., & Bennett, G. M. (2014). The tiniest tiny genomes. Annual Review of Microbiology, 68, 195–215.PubMedCrossRefGoogle Scholar
  136. Moran, N. A., & Degnan, P. H. (2006). Functional genomics of Buchnera and the ecology of aphid hosts. Molecular Ecology, 15, 1251–1261.PubMedCrossRefGoogle Scholar
  137. Moran, N. A., Dunbar, H. E., & Wilcox, J. L. (2005). Regulation of transcription in a reduced bacterial genome: Nutrient-provisioning genes of the obligate symbiont Buchnera aphidicola. Journal of Bacteriology, 187, 4229–4237.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Moriwaki, N., Matsushita, K., Nishina, M., & Kono, Y. (2003a). High concentrations of trehalose in aphid hemolymph. Applied Entomology and Zoology, 38, 241–248.CrossRefGoogle Scholar
  139. Moriwaki, N., Matsushita, K., Nishina, M., Matsuda, K., & Kono, Y. (2003b). High myo-inositol concentration in the hemolymph of planthoppers. Applied Entomology and Zoology, 38, 359–364.CrossRefGoogle Scholar
  140. Mousavi, S. A. R., Chauvin, A., Pascaud, F., Kellenberger, S., & Farmer, E. E. (2013). GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature, 500, 422–426.PubMedCrossRefGoogle Scholar
  141. Mutti, N. S., Park, Y., Reese, J. C., & Reeck, G. R. (2006). RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. Journal of Insect Science, 6, 1–7.PubMedCrossRefGoogle Scholar
  142. Mutti, N. S., Louis, J., Pappan, L. K., Pappan, K., Begum, K., Chen, M. S., Park, Y., Dittmer, N., Marshall, J., Reese, J. C., & Reeck, G. R. (2008). A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proceedings of the National Academy of Sciences of the United States of America, 105, 9965–9969.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Nachappa, P., Shapiro, A. A., & Tamborindeguy, C. (2012). Effect of ‘Candidatus Liberibacter solanacearum’ on fitness of its insect vector, Bactericera cockerelli (Hemiptera: Triozidae), on tomato. Phytopathology, 102, 41–46.PubMedCrossRefGoogle Scholar
  144. Nakabachi, A., Yamashita, A., Toh, H., Ishikawa, H., Dunbar, H. E., Moran, N. A., & Hattori, M. (2006). The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science, 314, 267.PubMedCrossRefGoogle Scholar
  145. Nakabachi, A., Ishida, K., Hongoh, Y., Ohkuma, M., & Miyagishima, S. Y. (2014). Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Current Biology, 24, R640–R641.PubMedCrossRefGoogle Scholar
  146. Neafsey, D. E., Waterhouse, R. M., Abai, M. R., Aganezov, S. S., Alekseyev, M. A., Allen, J. E., Amon, J., Arca, B., Arensburger, P., Artemov, G., Assour, L. A., Basseri, H., Berlin, A., Birren, B. W., Blandin, S. A., Brockman, A. I., Burkot, T. R., Burt, A., Chan, C. S., Chauve, C., Chiu, J. C., Christensen, M., Costantini, C., Davidson, V. L., Deligianni, E., Dottorini, T., Dritsou, V., Gabriel, S. B., Guelbeogo, W. M., Hall, A. B., Han, M. V., Hlaing, T., Hughes, D. S., Jenkins, A. M., Jiang, X., Jungreis, I., Kakani, E. G., Kamali, M., Kemppainen, P., Kennedy, R. C., Kirmitzoglou, I. K., Koekemoer, L. L., Laban, N., Langridge, N., Lawniczak, M. K., Lirakis, M., Lobo, N. F., Lowy, E., MacCallum, R. M., Mao, C., Maslen, G., Mbogo, C., McCarthy, J., Michel, K., Mitchell, S. N., Moore, W., Murphy, K. A., Naumenko, A. N., Nolan, T., Novoa, E. M., O’Loughlin, S., Oringanje, C., Oshaghi, M. A., Pakpour, N., Papathanos, P. A., Peery, A. N., Povelones, M., Prakash, A., Price, D. P., Rajaraman, A., Reimer, L. J., Rinker, D. C., Rokas, A., Russell, T. L., Sagnon, N., Sharakhova, M. V., Shea, T., Simao, F. A., Simard, F., Slotman, M. A., Somboon, P., Stegniy, V., Struchiner, C. J., Thomas, G. W., Tojo, M., Topalis, P., Tubio, J. M., Unger, M. F., Vontas, J., Walton, C., Wilding, C. S., Willis, J. H., Wu, Y. C., Yan, G., Zdobnov, E. M., Zhou, X., Catteruccia, F., Christophides, G. K., Collins, F. H., Cornman, R. S., Crisanti, A., Donnelly, M. J., Emrich, S. J., Fontaine, M. C., Gelbart, W., Hahn, M. W., Hansen, I. A., Howell, P. I., Kafatos, F. C., Kellis, M., Lawson, D., Louis, C., Luckhart, S., Muskavitch, M. A., Ribeiro, J. M., Riehle, M. A., Sharakhov, I. V., Tu, Z., Zwiebel, L. J., & Besansky, N. J. (2015). Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science, 347, 1258522.PubMedCrossRefGoogle Scholar
  147. Nicholson, S. J., & Puterka, G. J. (2014). Variation in the salivary proteomes of differentially virulent greenbug (Schizaphis graminum Rondani) biotypes. Journal of Proteomics, 105, 186–203.PubMedCrossRefGoogle Scholar
  148. Nicholson, S. J., Hartson, S. D., & Puterka, G. J. (2012). Proteomic analysis of secreted saliva from Russian wheat aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. Journal of Proteomics, 75, 2252–2268.PubMedCrossRefGoogle Scholar
  149. Niemeyer, H. M. (1988). Hydroxamic acids 4 hydroxy-1 4-benzoxazin-3-ones defense chemicals in the Gramineae. Phytochemistry, 27, 3349–3358.CrossRefGoogle Scholar
  150. Niemeyer, H. M. (2009). Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: Key defense chemicals of cereals. Journal of Agricultural and Food Chemistry, 57, 1677–1696.PubMedCrossRefGoogle Scholar
  151. Nikoh, N., & Nakabachi, A. (2009). Aphids acquired symbiotic genes via lateral gene transfer. BMC Biology, 7, 12. doi: 10.1186/1741-7007-7-12.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Nishikawa, H., Iijima, T., Kajitani, R., Yamaguchi, J., Ando, T., Suzuki, Y., Sugano, S., Fujiyama, A., Kosugi, S., Hirakawa, H., Tabata, S., Ozaki, K., Morimoto, H., Ihara, K., Obara, M., Hori, H., Itoh, T., & Fujiwara, H. (2015). A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nature Genetics, 47, 405–409.PubMedCrossRefGoogle Scholar
  153. Nygaard, S., Zhang, G., Schiøtt, M., Li, C., Wurm, Y., Hu, H., Zhou, J., Ji, L., Qiu, F., Rasmussen, M., Pan, H., Hauser, F., Krogh, A., Grimmelikhuijzen, C. J. P., Wang, J., & Boomsma, J. J. (2011). The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Research, 21, 1339–1348.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Oerke, E. C. (2006). Crop losses due to pests. The Journal of Agricultural Science, 144, 31–43.CrossRefGoogle Scholar
  155. Oikawa, A., Ishihara, A., & Iwamura, H. (2002). Induction of HDMBOA-Glc accumulation and DIMBOA-Glc 4-O-methyltransferase by jasmonic acid in poaceous plants. Phytochemistry, 61, 331–337.PubMedCrossRefGoogle Scholar
  156. Oikawa, A., Ishihara, A., Tanaka, C., Mori, N., Tsuda, M., & Iwamura, H. (2004). Accumulation of HDMBOA-Glc is induced by biotic stresses prior to the release of MBOA in maize leaves. Phytochemistry, 65, 2995–3001.PubMedCrossRefGoogle Scholar
  157. Oliver, K. M., Russell, J. A., Moran, N. A., & Hunter, M. S. (2003). Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Sciences of the United States of America, 100, 1803–1807.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Oliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America, 102, 12795–12800.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Oliver, K. M., Moran, N. A., & Hunter, M. S. (2006). Costs and benefits of a superinfection of facultative symbionts in aphids. Proceedings of the Royal Society B: Biological Sciences, 273, 1273–1280.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Oliver, K. M., Smith, A. H., & Russell, J. A. (2014). Defensive symbiosis in the real world – Advancing ecological studies of heritable, protective bacteria in aphids and beyond. Functional Ecology, 28, 341–355.CrossRefGoogle Scholar
  161. Oxley, P. R., Ji, L., Fetter-Pruneda, I., McKenzie, S. K., Li, C., Hu, H., Zhang, G., & Kronauer, D. J. (2014). The genome of the clonal raider ant Cerapachys biroi. Current Biology, 24, 451–458.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Pentzold, S., Zagrobelny, M., Rook, F., & Bak, S. (2014). How insects overcome two-component plant chemical defence: Plant β-glucosidases as the main target for herbivore adaptation. Biological Reviews, 89, 531–551.PubMedCrossRefGoogle Scholar
  163. Phalaraksh, C., Reynolds, S. E., Wilson, I. D., Lenz, E. M., Nicholson, J. K., & Lindon, J. C. (2008). A metabonomic analysis of insect development: H-1-NMR spectroscopic characterization of changes in the composition of the haemolymph of larvae and pupae of the tobacco hornworm, Manduca sexta. Science Asia, 34, 279–286.CrossRefGoogle Scholar
  164. Picelli, S., Bjorklund, A. K., Faridani, O. R., Sagasser, S., Winberg, G., & Sandberg, R. (2013). Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature Methods, 10, 1096–1098.PubMedCrossRefGoogle Scholar
  165. Pierik, R., Ballare, C. L., & Dicke, M. (2014). Ecology of plant volatiles: Taking a plant community perspective. Plant, Cell & Environment, 37, 1845–1853.CrossRefGoogle Scholar
  166. Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521.PubMedCrossRefGoogle Scholar
  167. Pimentel, D. (1997). Pest management in agriculture: Techniques for reducing pesticide use: Environmental and economic benefits (p. 456). Chichester: Wiley.Google Scholar
  168. Pitino, M., & Hogenhout, S. A. (2013). Aphid protein effectors promote aphid colonization in a plant species-specific manner. Molecular Plant-Microbe Interactions, 26, 130–139.PubMedCrossRefGoogle Scholar
  169. Pitino, M., Coleman, A. D., Maffei, M. E., Ridout, C. J., & Hogenhout, S. A. (2011). Silencing of aphid genes by dsRNA feeding from plants. PloS One, 6, e25709.PubMedPubMedCentralCrossRefGoogle Scholar
  170. Poliakov, A., Russell, C. W., Ponnala, L., Hoops, H. J., Sun, Q., Douglas, A. E., & van Wijk, K. J. (2011). Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis. Molecular and Cellular Proteomics, 10, M110.007039.Google Scholar
  171. Ramsey, J. S., Wilson, A. C., de Vos, M., Sun, Q., Tamborindeguy, C., Winfield, A., Malloch, G., Smith, D. M., Fenton, B., Gray, S. M., & Jander, G. (2007). Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design. BMC Genomics, 8, 423.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Rao, S. A., Carolan, J. C., & Wilkinson, T. L. (2013). Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PloS One, 8, e57413.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Rhodes, J. D., Thain, J. F., & Wildon, D. C. (1999). Evidence for physically distinct systemic signalling pathways in the wounded tomato plant. Annals of Botany, 84, 109–116.CrossRefGoogle Scholar
  174. Rider, S. D., Jr., Sun, W., Ratcliffe, R. H., & Stuart, J. J. (2002). Chromosome landing near avirulence gene vH13 in the Hessian fly. Genome, 45, 812–822.PubMedCrossRefGoogle Scholar
  175. Robert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49, 317–343.PubMedCrossRefGoogle Scholar
  176. Robinson, G. E., Hackett, K. J., Purcell-Miramontes, M., Brown, S. J., Evans, J. D., Goldsmith, M. R., Lawson, D., Okamuro, J., Robertson, H. M., & Schneider, D. J. (2011). Creating a buzz about insect genomes. Science, 331, 1386.PubMedCrossRefGoogle Scholar
  177. Rodriguez, P. A., Stam, R., Warbroek, T., & Bos, J. I. B. (2014). Mp10 and Mp42 from the aphid species Myzus persicae trigger plant defenses in Nicotiana benthamiana through different activities. Molecular Plant-Microbe Interactions, 27, 30–39.PubMedCrossRefGoogle Scholar
  178. Roessner, U., Willmitzer, L., & Fernie, A. R. (2002). Metabolic profiling and biochemical phenotyping of plant systems. Plant Cell Reports, 21, 189–196.CrossRefGoogle Scholar
  179. Rowe, H. C., Hansen, B. G., Halkier, B. A., & Kliebenstein, D. J. (2008). Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell, 20, 1199–1216.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Saito, N., Ohashi, Y., Soga, T., & Tomita, M. (2010). Unveiling cellular biochemical reactions via metabolomics-driven approaches. Current Opinion in Microbiology, 13, 358–362.PubMedCrossRefGoogle Scholar
  181. Salvador-Recatala, V., Tjallingii, W. F., & Farmer, E. E. (2014). Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. The New Phytologist, 203, 674–684.PubMedCrossRefGoogle Scholar
  182. Schmelz, E. A., Engelberth, J., Alborn, H. T., Tumlinson, J. H., & Teal, P. E. A. (2009). Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proceedings of the National Academy of Sciences of the United States of America, 106, 653–657.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Schmid, M., Sieber, R., Zimmermann, Y. S., & Vorburger, C. (2012). Development, specificity and sublethal effects of symbiont-conferred resistance to parasitoids in aphids. Functional Ecology, 26, 207–215.CrossRefGoogle Scholar
  184. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y., & Ishikawa, H. (2000). Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature, 407, 81–86.PubMedCrossRefGoogle Scholar
  185. Sloan, D. B., & Moran, N. A. (2012). Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Molecular Biology and Evolution, 29, 3781–3792.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Sloan, D. B., Nakabachi, A., Richards, S., Qu, J., Murali, S. C., Gibbs, R. A., & Moran, N. A. (2014). Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Molecular Biology and Evolution, 31, 857–871.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Smith, C. M., & Clement, S. L. (2012). Molecular bases of plant resistance to arthropods. Annual Review of Entomology, 57, 309–328.PubMedCrossRefGoogle Scholar
  188. Smith, C. D., Zimin, A., Holt, C., Abouheif, E., Benton, R., Cash, E., Croset, V., Currie, C. R., Elhaik, E., Elsik, C. G., Fave, M.-J., Fernandes, V., Gadau, J., Gibson, J. D., Graur, D., Grubbs, K. J., Hagen, D. E., Helmkampf, M., Holley, J.-A., Hu, H., Viniegra, A. S. I., Johnson, B. R., Johnson, R. M., Khila, A., Kim, J. W., Laird, J., Mathis, K. A., Moeller, J. A., Muñoz-Torres, M. C., Murphy, M. C., Nakamura, R., Nigam, S., Overson, R. P., Placek, J. E., Rajakumar, R., Reese, J. T., Robertson, H. M., Smith, C. R., Suarez, A. V., Suen, G., Suhr, E. L., Tao, S., Torres, C. W., van Wilgenburg, E., Viljakainen, L., Walden, K. K. O., Wild, A. L., Yandell, M., Yorke, J. A., & Tsutsui, N. D. (2011a). Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proceedings of the National Academy of Sciences of the United States of America, 108, 5673–5678.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Smith, C. R., Smith, C. D., Robertson, H. M., Helmkampf, M., Zimin, A., Yandell, M., Holt, C., Hu, H., Abouheif, E., Benton, R., Cash, E., Croset, V., Currie, C. R., Elhaik, E., Elsik, C. G., Favé, M.-J., Fernandes, V., Gibson, J. D., Graur, D., Gronenberg, W., Grubbs, K. J., Hagen, D. E., Viniegra, A. S. I., Johnson, B. R., Johnson, R. M., Khila, A., Kim, J. W., Mathis, K. A., Munoz-Torres, M. C., Murphy, M. C., Mustard, J. A., Nakamura, R., Niehuis, O., Nigam, S., Overson, R. P., Placek, J. E., Rajakumar, R., Reese, J. T., Suen, G., Tao, S., Torres, C. W., Tsutsui, N. D., Viljakainen, L., Wolschin, F., & Gadau, J. (2011b). Draft genome of the red harvester ant Pogonomyrmex barbatus. Proceedings of the National Academy of Sciences of the United States of America, 108, 5667–5672.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Stahlberg, R., & Cosgrove, D. J. (1992). Rapid alterations in growth-rate and electrical potentials upon stem excision in pea seedlings. Planta, 187, 523–531.PubMedCrossRefGoogle Scholar
  191. Stahlberg, R., & Cosgrove, D. J. (1997). The propagation of slow wave potentials in pea epicotyls. Plant Physiology, 113, 209–217.PubMedPubMedCentralCrossRefGoogle Scholar
  192. Stark, A., Lin, M. F., Kheradpour, P., Pedersen, J. S., Parts, L., Carlson, J. W., Crosby, M. A., Rasmussen, M. D., Roy, S., Deoras, A. N., Ruby, J. G., Brennecke, J., Hodges, E., Hinrichs, A. S., Caspi, A., Park, S.-W., Han, M. V., Maeder, M. L., Polansky, B. J., Robson, B. E., Aerts, S., van Helden, J., Hassan, B., Gilbert, D. G., Eastman, D. A., Rice, M., Weir, M., Hahn, M. W., Park, Y., Dewey, C. N., Pachter, L., Kent, W. J., Haussler, D., Lai, E. C., Bartel, D. P., Hannon, G. J., Kaufman, T. C., Eisen, M. B., Clark, A. G., Smith, D., Celniker, S. E., Gelbart, W. M., & Kellis, M. (2007). Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 450, 219–232.PubMedPubMedCentralCrossRefGoogle Scholar
  193. Steinbrenner, A. D., Gomez, S., Osorio, S., Fernie, A. R., & Orians, C. M. (2011). Herbivore-induced changes in tomato (Solanum lycopersicum) primary metabolism: A whole plant perspective. Journal of Chemical Ecology, 37, 1294–1303.PubMedCrossRefGoogle Scholar
  194. Strong, D. R., Lawton, J. H., & Southwood, T. R. E. (1984). Insects on plants: Community patterns and mechanisms. Cambridge, MA: Harvard University Press.Google Scholar
  195. Su, Q., Oliver, K. M., Pan, H., Jiao, X., Liu, B., Xie, W., Wang, S., Wu, Q., Xu, B., White, J. A., Zhou, X., & Zhang, Y. (2013). Facultative symbiont Hamiltonella confers benefits to Bemisia tabaci (Hemiptera: Aleyrodidae), an invasive agricultural pest worldwide. Environmental Entomology, 42, 1265–1271.PubMedCrossRefGoogle Scholar
  196. Suen, G., Teiling, C., Li, L., Holt, C., Abouheif, E., Bornberg-Bauer, E., Bouffard, P., Caldera, E. J., Cash, E., Cavanaugh, A., Denas, O., Elhaik, E., Favé, M.-J., Gadau, J., Gibson, J. D., Graur, D., Grubbs, K. J., Hagen, D. E., Harkins, T. T., Helmkampf, M., Hu, H., Johnson, B. R., Kim, J., Marsh, S. E., Moeller, J. A., Muñoz-Torres, M. C., Murphy, M. C., Naughton, M. C., Nigam, S., Overson, R., Rajakumar, R., Reese, J. T., Scott, J. J., Smith, C. R., Tao, S., Tsutsui, N. D., Viljakainen, L., Wissler, L., Yandell, M. D., Zimmer, F., Taylor, J., Slater, S. C., Clifton, S. W., Warren, W. C., Elsik, C. G., Smith, C. D., Weinstock, G. M., Gerardo, N. M., & Currie, C. R. (2011). The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. PLoS Genetics, 7, e1002007.PubMedPubMedCentralCrossRefGoogle Scholar
  197. Sugimoto, K., Matsui, K., Iijima, Y., Akakabe, Y., Muramoto, S., Ozawa, R., Uefune, M., Sasaki, R., Alamgir, K. M., Akitake, S., Nobuke, T., Galis, I., Aoki, K., Shibata, D., & Takabayashi, J. (2014). Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proceedings of the National Academy of Sciences of the United States of America, 111, 7144–7149.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Sumner, L. W., Lei, Z., Nikolau, B. J., & Saito, K. (2015). Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects. Natural Product Reports, 32, 212–229.PubMedCrossRefGoogle Scholar
  199. Tay, W. T., Evans, G. A., Boykin, L. M., & De Barro, P. J. (2012). Will the real Bemisia tabaci please stand up? PloS One, 7, e50550.PubMedPubMedCentralCrossRefGoogle Scholar
  200. The Honeybee Genome Sequencing Consortium. (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443, 931–949.PubMedCentralCrossRefGoogle Scholar
  201. The International Aphid Genomics Consortium. (2010). Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology, 8, e1000313.PubMedCentralCrossRefGoogle Scholar
  202. The International Silkworm Genome Consortium. (2008). The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 38, 1036–1045.CrossRefGoogle Scholar
  203. Tribolium Genome Sequencing Consortium. (2008). The genome of the model beetle and pest Tribolium castaneum. Nature, 452, 949–955.CrossRefGoogle Scholar
  204. Van Bel, A. J. E., & Van Der Schoot, C. (1988). Primary function of the protective layer in contact cells buffer against oscillations in hydrostatic pressure in the vessels? International Association of Wood Anatomists Bull, 9, 285–288.Google Scholar
  205. van Bel, A. J. E., Furch, A. C. U., Will, T., Buxa, S. V., Musetti, R., & Hafke, J. B. (2014). Spread the news: Systemic dissemination and local impact of Ca2+ signals along the phloem pathway. Journal of Experimental Botany, 65, 1761–1787.PubMedCrossRefGoogle Scholar
  206. Vandermoten, S., Harmel, N., Mazzucchelli, G., De Pauw, E., Haubruge, E., & Francis, F. (2014). Comparative analyses of salivary proteins from three aphid species. Insect Molecular Biology, 23, 67–77.PubMedCrossRefGoogle Scholar
  207. Verberk, W. C. E. P., Sommer, U., Davidson, R. L., & Viant, M. R. (2013). Anaerobic metabolism at thermal extremes: A metabolomic test of the oxygen limitation hypothesis in an aquatic insect. Integrative and Comparative Biology, 53, 609–619.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Verhage, A., Vlaardingerbroek, I., Raaymakers, C., Van Dam, N. M., Dicke, M., Van Wees, S. C. M., & Pieterse, C. M. J. (2011). Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Frontiers in Plant Science, 2, article 47:1–12. doi: 10.3389/fpls.2011.00047.
  209. Vijay, N., Poelstra, J. W., Kunstner, A., & Wolf, J. B. (2013). Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Molecular Ecology, 22, 620–634.PubMedCrossRefGoogle Scholar
  210. Vorburger, C., Gehrer, L., & Rodriguez, P. (2010). A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biology Letters, 6, 109–111.PubMedCrossRefGoogle Scholar
  211. Vos, I. A., Pieterse, C. M. J., & van Wees, S. C. M. (2013). Costs and benefits of hormone-regulated plant defences. Plant Pathology, 62, 43–55.CrossRefGoogle Scholar
  212. Walsh, D. B., Bolda, M. P., Goodhue, R. E., Dreves, A. J., Lee, J., Bruck, D. J., Walton, V. M., O’Neal, S. D., & Zalom, F. G. (2011). Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. Journal of Integrated Pest Management, 2, G1–G7.CrossRefGoogle Scholar
  213. Wang, Y., Carolan, J. C., Hao, F., Nicholson, J. K., Wilkinson, T. L., & Douglas, A. E. (2010). Integrated metabonomic-proteomic analysis of an insect-bacterial symbiotic system. Journal of Proteome Research, 9, 1257–1267.PubMedCrossRefGoogle Scholar
  214. Wang, X., Fang, X., Yang, P., Jiang, X., Jiang, F., Zhao, D., Li, B., Cui, F., Wei, J., Ma, C., Wang, Y., He, J., Luo, Y., Wang, Z., Guo, X., Guo, W., Wang, X., Zhang, Y., Yang, M., Hao, S., Chen, B., Ma, Z., Yu, D., Xiong, Z., Zhu, Y., Fan, D., Han, L., Wang, B., Chen, Y., Wang, J., Yang, L., Zhao, W., Feng, Y., Chen, G., Lian, J., Li, Q., Huang, Z., Yao, X., Lv, N., Zhang, G., Li, Y., Wang, J., Wang, J., Zhu, B., & Kang, L. (2014). The locust genome provides insight into swarm formation and long-distance flight. Nature Communications, 5, 2957.PubMedPubMedCentralGoogle Scholar
  215. Waters, L. S., & Storz, G. (2009). Regulatory RNAs in bacteria. Cell, 136, 615–628.PubMedPubMedCentralCrossRefGoogle Scholar
  216. Wentzell, A. M., Rowe, H. C., Hansen, B. G., Ticconi, C., Halkier, B. A., & Kliebenstein, D. J. (2007). Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genetics, 3, 1687–1701.PubMedCrossRefGoogle Scholar
  217. Werren, J. H., Richards, S., Desjardins, C. A., Niehuis, O., Gadau, J., Colbourne, J. K. & Group TNGW. (2010). Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science, 327, 343–348.Google Scholar
  218. White, B. J., Collins, F. H., & Besansky, N. J. (2011). Evolution of Anopheles gambiae in relation to humans and malaria. Annual Review of Ecology, Evolution, and Systematics, 42, 111–132.CrossRefGoogle Scholar
  219. Wilcox, J. L., Dunbar, H. E., Wolfinger, R. D., & Moran, N. A. (2003). Consequences of reductive evolution for gene expression in an obligate endosymbiont. Molecular Microbiology, 48, 1491–1500.PubMedCrossRefGoogle Scholar
  220. Wildon, D. C., Thain, J. F., Minchin, P. E. H., Gubb, I. R., Reilly, A. J., Skipper, Y. D., Doherty, H. M., Odonnell, P. J., & Bowles, D. J. (1992). Electrical signaling and systemic proteinase inhibitor induction in the wounded plant. Nature, 360, 62–65.CrossRefGoogle Scholar
  221. Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64, 3–19.PubMedCrossRefGoogle Scholar
  222. Witzgall, P., Kirsch, P., & Cork, A. (2010). Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 36, 80–100.PubMedCrossRefGoogle Scholar
  223. Wolfender, J. L., Rudaz, S., Choi, Y. H., & Kim, H. K. (2013). Plant metabolomics: From holistic data to relevant biomarkers. Current Medicinal Chemistry, 20, 1056–1090.PubMedGoogle Scholar
  224. Wu, D., Daugherty, S. C., Van Aken, S. E., Pai, G. H., Watkins, K. L., Khouri, H., Tallon, L. J., Zaborsky, J. M., Dunbar, H. E., Tran, P. L., Moran, N. A., & Eisen, J. A. (2006). Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biology, 4, 1079–1092.CrossRefGoogle Scholar
  225. Wu, R., Wu, Z., Wang, X., Yang, P., Yu, D., Zhao, C., Xu, G., & Kang, L. (2012). Metabolomic analysis reveals that carnitines are key regulatory metabolites in phase transition of the locusts. Proceedings of the National Academy of Sciences of the United States of America, 109, 3259–3263.PubMedPubMedCentralCrossRefGoogle Scholar
  226. Wurm, Y., Wang, J., Riba-Grognuz, O., Corona, M., Nygaard, S., Hunt, B. G., Ingram, K. K., Falquet, L., Nipitwattanaphon, M., Gotzek, D., Dijkstra, M. B., Oettler, J., Comtesse, F., Shih, C.-J., Wu, W.-J., Yang, C.-C., Thomas, J., Beaudoing, E., Pradervand, S., Flegel, V., Cook, E. D., Fabbretti, R., Stockinger, H., Long, L., Farmerie, W. G., Oakey, J., Boomsma, J. J., Pamilo, P., Yi, S. V., Heinze, J., Goodisman, M. A. D., Farinelli, L., Harshman, K., Hulo, N., Cerutti, L., Xenarios, I., Shoemaker, D., & Keller, L. (2011). The genome of the fire ant Solenopsis invicta. Proceedings of the National Academy of Sciences of the United States of America, 108, 5679–5684.PubMedPubMedCentralCrossRefGoogle Scholar
  227. Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., Huang, W., He, G., Gu, S., Li, S., Zhou, X., Lam, T. W., Li, Y., Xu, X., Wong, G. K., & Wang, J. (2014). SOAPdenovo-Trans: De novo transcriptome assembly with short RNA-Seq reads. Bioinformatics, 30, 1660–1666.PubMedCrossRefGoogle Scholar
  228. Xue, J., Zhou, X., Zhang, C.-X., Yu, L.-L., Fan, H.-W., Wang, Z., Xu, H.-J., Xi, Y., Zhu, Z.-R., Zhou, W.-W., Pan, P.-L., Li, B.-L., Colbourne, J., Noda, H., Suetsugu, Y., Kobayashi, T., Zheng, Y., Liu, S., Zhang, R., Liu, Y., Luo, Y.-D., Fang, D.-M., Chen, Y., Zhan, D.-L., Lv, X.-D., Cai, Y., Wang, Z.-B., Huang, H.-J., Cheng, R.-L., & Zhang, X.-C. (2014). Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biology, 15, 521.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Yin, C., Liu, Y., Liu, J., Xiao, H., Huang, S., Lin, Y., Han, Z., & Li, F. (2014). ChiloDB: A genomic and transcriptome database for an important rice insect pest Chilo suppressalis. Database, 2014: article ID bau065; doi: 10.1093/database/bau065.
  230. Yonekura-Sakakibara, K., Fukushima, A., & Saito, K. (2013). Transcriptome data modeling for targeted plant metabolic engineering. Current Opinion in Biotechnology, 24, 285–290.PubMedCrossRefGoogle Scholar
  231. You, M., Yue, Z., He, W., Yang, X., Yang, G., Xie, M., Zhan, D., Baxter, S. W., Vasseur, L., Gurr, G. M., Douglas, C. J., Bai, J., Wang, P., Cui, K., Huang, S., Li, X., Zhou, Q., Wu, Z., Chen, Q., Liu, C., Wang, B., Li, X., Xu, X., Lu, C., Hu, M., Davey, J. W., Smith, S. M., Chen, M., Xia, X., Tang, W., Ke, F., Zheng, D., Hu, Y., Song, F., You, Y., Ma, X., Peng, L., Zheng, Y., Liang, Y., Chen, Y., Yu, L., Zhang, Y., Liu, Y., Li, G., Fang, L., Li, J., Zhou, X., Luo, Y., Gou, C., Wang, J., Wang, J., Yang, H., & Wang, J. (2013). A heterozygous moth genome provides insights into herbivory and detoxification. Nature Genetics, 45, 220–225.PubMedCrossRefGoogle Scholar
  232. Zhan, S., Merlin, C., Boore, J. L., & Reppert, S. M. (2011). The monarch butterfly genome yields insights into long-distance migration. Cell, 147, 1171–1185.PubMedPubMedCentralCrossRefGoogle Scholar
  233. Zhan, S., Zhang, W., Niitepold, K., Hsu, J., Haeger, J. F., Zalucki, M. P., Altizer, S., de Roode, J. C., Reppert, S. M., & Kronforst, M. R. (2014). The genetics of monarch butterfly migration and warning colouration. Nature, 514, 317–321.PubMedPubMedCentralCrossRefGoogle Scholar
  234. Zhang, F., Dossey, A. T., Zachariah, C., Edison, A. S., & Bruschweiler, R. (2007). Strategy for automated analysis of dynamic metabolic mixtures by NMR. Application to an insect venom. Analytical Chemistry, 79, 7748–7752.PubMedCrossRefGoogle Scholar
  235. Zhang, Q., Lu, Y.-X., & Xu, W.-H. (2012). Integrated proteomic and metabolomic analysis of larval brain associated with diapause induction and preparation in the cotton bollworm, Helicoverpa armigera. Journal of Proteome Research, 11, 1042–1053.PubMedCrossRefGoogle Scholar
  236. Zipfel, C. (2014). Plant pattern-recognition receptors. Trends in Immunology, 35, 345–351.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA
  2. 2.Department of NematologyUniversity of CaliforniaRiversideUSA

Personalised recommendations