Optimizing Polarization Dependent Hard X-ray Photoemission Experiments for Solids

  • J. Weinen
  • T. C. Koethe
  • S. Agrestini
  • D. Kasinathan
  • F. Strigari
  • T. Haupricht
  • Y. F. Liao
  • K.-D. Tsuei
  • L. H. Tjeng
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 59)


Polarization dependent hard X-ray photoemission (HAXPES) experiments are a very powerful tool to identify the nature of the orbitals contributing to the valence band. To optimize this type of experiments we have set up a photoelectron spectroscopy system consisting of two electron energy analyzers mounted such that one detects the photoelectrons propagating parallel to the polarization vector (E) of the light and the other perpendicular. This method has the advantage over using phase retarders (to rotate the E-vector of the light) that the full intensity and full polarization of the light is available for the experiments. Using NiO as an example, we are able to identify reliably the Ni 3d spectral weight of the valence band and at the same time demonstrate the importance of the Ni 4s for the chemical stability of the compound. We have also discovered the limitations of this type of polarization dependent experiments: the polarization dependence is less than expected on the basis of calculations for free atoms and we can ascribe this incompleteness of the polarization dependence to the presence of appreciable side-scattering effects of the outgoing electrons, even at these high kinetic energies in the 6–8 keV range.


Hard X-ray photoemission Correlated materials Electronic structure Chemical bonding Photoionization cross section Photoelectron angular distribution 



We would like to thank G. Panaccione for valuable discussions. We acknowledge Lucie Hamdan and Thomas Mende for their skillful technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft through SFB 608 and FOR 1346.


  1. 1.
    A. Sekiyama, J. Yamaguchi, A. Higashiya, M. Obara, H. Sugiyama, M.Y. Kimura, S. Suga, S. Imada, I.A. Nekrasov, M. Yabashi, K. Tamasaku, T. Ishikawa, New J. Phys. 12(4), 043045 (2010). doi: 10.1088/1367-2630/12/4/043045 ADSCrossRefGoogle Scholar
  2. 2.
    S. Ouardi, G.H. Fecher, X. Kozina, G. Stryganyuk, B. Balke, C. Felser, E. Ikenaga, T. Sugiyama, N. Kawamura, M. Suzuki, K. Kobayashi, Phys. Rev. Lett. 107, 036402 (2011). doi: 10.1103/PhysRevLett.107.036402 ADSCrossRefGoogle Scholar
  3. 3.
    Y. Nakatsu, A. Sekiyama, S. Imada, Y. Okamoto, S. Niitaka, H. Takagi, A. Higashiya, M. Yabashi, K. Tamasaku, T. Ishikawa, S. Suga, Phys. Rev. B 83, 115120 (2011). doi: 10.1103/PhysRevB.83.115120 ADSCrossRefGoogle Scholar
  4. 4.
    S. Ouardi, G.H. Fecher, C. Felser, J. Electron Spectrosc. 190, 249 (2013). doi: 10.1016/j.elspec.2013.09.001 CrossRefGoogle Scholar
  5. 5.
    J. Weinen, T.C. Koethe, C.F. Chang, S. Agrestini, D. Kasinathan, Y.F. Liao, H. Fujiwara, C. Schüßler-Langeheine, F. Strigari, T. Haupricht, G. Panaccione, F. Offi, G. Monaco, S. Huotari, K.D. Tsuei, L.H. Tjeng, J. Electron Spectrosc. Rel. Phen. 198, 6 (2015). doi: URL:
  6. 6.
    F. Offi, A. Fondacaro, G. Paolicelli, A. De Luisa, G. Stefani, Nucl. Instrum. Methods Phys. Res., Sect. A 550(12), 454 (2005). doi: URL:
  7. 7.
    M. Oku, H. Tokuda, K. Hirokawa, J. Electron Spectrosc. 53(4), 201 (1991). doi: 10.1016/0368-2048(91)85039-V CrossRefGoogle Scholar
  8. 8.
    A.E. Bocquet, T. Mizokawa, T. Saitoh, H. Namatame, A. Fujimori, Phys. Rev. B 46, 3771 (1992). doi: 10.1103/PhysRevB.46.3771 ADSCrossRefGoogle Scholar
  9. 9.
    S. Uhlenbrock, C. Scharfschwerdt, M. Neumann, G. Illing, H.J. Freund, J. Phys.: Condens. Mat. 4(40), 7973 (1992). URL:
  10. 10.
    L. Sangaletti, L.E. Depero, F. Parmigiani, Solid State Commun. 103(7), 421 (1997). doi: 10.1016/S0038-1098(97)00185-3
  11. 11.
    S. Altieri, L.H. Tjeng, A. Tanaka, G.A. Sawatzky, Phys. Rev. B 61, 13403 (2000). doi: 10.1103/PhysRevB.61.13403 ADSCrossRefGoogle Scholar
  12. 12.
    M. Taguchi, M. Matsunami, Y. Ishida, R. Eguchi, A. Chainani, Y. Takata, M. Yabashi, K. Tamasaku, Y. Nishino, T. Ishikawa, Y. Senba, H. Ohashi, S. Shin, Phys. Rev. Lett. 100, 206401 (2008). doi: 10.1103/PhysRevLett.100.206401 ADSCrossRefGoogle Scholar
  13. 13.
    M.B. Trzhaskovskaya, V.I. Nefedov, V.G. Yarzhemsky, Atom. Data Nucl. Data 77(1), 97 (2001). doi: 10.1006/adnd.2000.0849
  14. 14.
    M.B. Trzhaskovskaya, V.K. Nikulin, V.I. Nefedov, V.G. Yarzhemsky, Atom. Data Nucl. Data 92(2), 245 (2006). doi: 10.1016/j.adt.2005.12.002
  15. 15.
    T.J.T. Haupricht, Transition metal impurities in wide bandgap oxides: fundamental model systems for strongly correlated oxides. Ph.D. thesis, Universität zu Köln (2011)Google Scholar
  16. 16.
    J. van Elp, H. Eskes, P. Kuiper, G.A. Sawatzky, Phys. Rev. B 45, 1612 (1992). doi: 10.1103/PhysRevB.45.1612 ADSCrossRefGoogle Scholar
  17. 17.
    A. Fujimori, F. Minami, Phys. Rev. B 30, 957 (1984). doi: 10.1103/PhysRevB.30.957 ADSCrossRefGoogle Scholar
  18. 18.
    G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 53, 2339 (1984). doi: 10.1103/PhysRevLett.53.2339 ADSCrossRefGoogle Scholar
  19. 19.
    K. Koepernik, H. Eschrig, Phys. Rev. B 59, 1743 (1999). doi: 10.1103/PhysRevB.59.1743 ADSCrossRefGoogle Scholar
  20. 20.
    J.C. Woicik, E.J. Nelson, L. Kronik, M. Jain, J.R. Chelikowsky, D. Heskett, L.E. Berman, G.S. Herman, Phys. Rev. Lett. 89, 077401 (2002). doi: 10.1103/PhysRevLett.89.077401. URL:
  21. 21.
    K. Kobayashi, Y. Takata, T. Yamamoto, J.J. Kim, H. Makino, K. Tamasaku, M. Yabashi, D. Miwa, T. Ishikawa, S. Shin, T. Yao, Jpn J. Appl. Phys. 43(8A), L1029 (2004). URL:
  22. 22.
    G. Panaccione, G. Cautero, M. Cautero, A. Fondacaro, M. Grioni, P. Lacovig, G. Monaco, F. Offi, G. Paolicelli, M. Sacchi, N. Stojić, G. Stefani, R. Tommasini, P. Torelli, J. Phys. Condens. Matter 17(17), 2671 (2005). URL:
  23. 23.
    D.J. Payne, R.G. Egdell, G. Paolicelli, F. Offi, G. Panaccione, P. Lacovig, G. Monaco, G. Vanko, A. Walsh, G.W. Watson, J. Guo, G. Beamson, P.A. Glans, T. Learmonth, K.E. Smith, Phys. Rev. B 75, 153102 (2007). doi: 10.1103/PhysRevB.75.153102. URL:
  24. 24.
    J.C. Woicik, M. Yekutiel, E.J. Nelson, N. Jacobson, P. Pfalzer, M. Klemm, S. Horn, L. Kronik, Phys. Rev. B 76, 165101 (2007). doi: 10.1103/PhysRevB.76.165101. URL:
  25. 25.
    K. Kobayashi, Nuclear instruments and methods in physics research section a: accelerators, spectrometers, detectors and associated equipment 601(12), 32 (2009). doi: URL: Special issue in honour of Prof. Kai Siegbahn
  26. 26.
    L.H. Tjeng, A.R. Vos, G.A. Sawatzky, Surf. Sci. 235(23), 269 (1990). doi: 10.1016/0039-6028(90)90802-F
  27. 27.
    U. Schönberger, F. Aryasetiawan, Phys. Rev. B 52, 8788 (1995). doi: 10.1103/PhysRevB.52.8788. Also see the references therein
  28. 28.
    A.X. Gray, C. Papp, S. Ueda, B. Balke, Y. Yamashita, L. Plucinski, J. Minár, J. Braun, E.R. Ylvisaker, C.M. Schneider, W.E. Pickett, H. Ebert, K. Kobayashi, C.S. Fadley, Nat. Mater. 10(10), 759 (2011). doi: 10.1038/nmat3089
  29. 29.
    M.A. Vicente Alvarez, H. Ascolani, G. Zampieri, Phys. Rev. B 54, 14703 (1996). doi: 10.1103/PhysRevB.54.14703
  30. 30.
    N.J. Shevchik, Phys. Rev. B 16, 3428 (1977). doi: 10.1103/PhysRevB.16.3428 ADSCrossRefGoogle Scholar
  31. 31.
    R.C. White, C.S. Fadley, M. Sagurton, Z. Hussain, Phys. Rev. B 34, 5226 (1986). doi: 10.1103/PhysRevB.34.5226 ADSCrossRefGoogle Scholar
  32. 32.
    T.C. Koethe, J.C. Cezar, N.B. Brookes, Z. Hu, L.H. Tjeng, unpublishedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. Weinen
    • 1
  • T. C. Koethe
    • 2
  • S. Agrestini
    • 1
  • D. Kasinathan
    • 1
  • F. Strigari
    • 2
  • T. Haupricht
    • 2
  • Y. F. Liao
    • 3
  • K.-D. Tsuei
    • 3
  • L. H. Tjeng
    • 1
  1. 1.Max Planck Institute for Chemical Physics of SolidsDresdenGermany
  2. 2.II. Physikalisches InstitutUniversität zu KölnCologneGermany
  3. 3.National Synchrotron Radiation Research CenterTaiwanChina

Personalised recommendations