Automatic Detection of Parkinson’s Disease in Reverberant Environments

  • Juan Rafael Orozco-Arroyave
  • Tino Haderlein
  • Elmar Nöth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9302)

Abstract

Automatic classification of speakers with Parkinson’s disease (PD) and healthy controls (HC) is performed considering a method for the characterization of the speech signals which is based on the estimation of the energy content of the unvoiced frames. The method is tested with recordings of three languages: Spanish, German, and Czech. Additionally, the signals are affected by two different reverberant scenarios in order to validate the robustness of the proposed method. The obtained results range from \(85\%\) to \(99\%\) of accuracy depending on the speech task, the spoken language, and the recording scenario. The method shows to be accurate and robust even when the signals are reverberated. This work is a step forward to the development of methods to assess the speech of PD patients without requiring special acoustic conditions.

Keywords

Parkinson’s disease Reverberant evironments Unvoiced frames Multi-language 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hornykiewicz, O.: Biochemical aspects of Parkinson’s disease. Neurology 51(2), S2–S9 (1998)CrossRefGoogle Scholar
  2. 2.
    de Rijk, M.C., Launer, L.J., Berger, K., Breteler, M.M., Dartigues, J.F., Baldereschi, M., Fratiglioni, L., Lobo, A., Martinez-Lage, J., Trenkwalder, C., Hofman, A.: Prevalence of Parkinson’s Disease in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 54(11 Suppl 5), S21–S23 (2000)Google Scholar
  3. 3.
    Worth, P.: How to treat Parkinson’s disease in 2013. Clinical Medicine 13(1), 93–96 (2013)CrossRefGoogle Scholar
  4. 4.
    Ramig, L.O., Fox, C., Sapir, S.: Speech treatment for Parkinson’s disease. Exp. Rev. Neurother. 8(2), 297–309 (2008)CrossRefGoogle Scholar
  5. 5.
    Zicker, J.E., Tompkins, W.J., Rubow, R.T., Abbs, J.H.: A portable microprocessor-based biofeedback training device. IEEE Transactions on Biomededical Engineering 27(9), 509–515 (1980)CrossRefGoogle Scholar
  6. 6.
    Wirebrand, M.: Real-time monitoring of voice characteristics using accelerometer and microphone measurements. Master’s thesis, Linköpings universitet, Linköping, Sweden (2011)Google Scholar
  7. 7.
    Vásquez-Correa, J.C., Orozco-Arroyave, J.R., Arias-Londoño, J.D., Vargas-Bonilla, J.F., Nöth, E.: New computer aided device for real time analysis of speech of people with Parkinson’s disease. Rev. Fac. Ing. Universidad de Antioquia 1(72), 87–103 (2014)Google Scholar
  8. 8.
    Boersma, P., Weenink, D.: Praat, a system for doing phonetics by computer. Glot International 5(9/10), 341–345 (2001)Google Scholar
  9. 9.
    Orozco-Arroyave, J.R., Hönig, F., Arias-Londoño, J.D., Vargas-Bonilla, J.F., Skodda, S., Rusz, J., Nöth, E.: Automatic detection of parkinson’s disease from words uttered in three different languages. In: Proceedings of the 15th INTERSPEECH, pp. 1573–1577 (2014)Google Scholar
  10. 10.
    Orozco-Arroyave, J.R., Arias-Londoño, J.D., Vargas-Bonilla, J.F., González-Rátiva, M.C., Nöth, E.: New spanish speech corpus database for the analysis of people suffering from parkinson’s disease. In: Proceedings of the 9th Language Resources and Evaluation Conference (LREC), pp. 42–347 (2014)Google Scholar
  11. 11.
    Goetz, C.G., Poewe, W., Rascol, O., Sampaio, C., Stebbins, G.T., Counsell, C., Giladi, N., Holloway, R.G., Moore, C.G., Wenning, G.K., Yahr, M.D., Seidl, L.: Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Movement Disorders 19(9), 1020–1028 (2004)CrossRefGoogle Scholar
  12. 12.
    Skodda, S., Visser, W., Schlegel, U.: Vowel articulation in Parkinson’s diease. J. of Voice 25(4), 467–472 (2011). Erratum in J. of Voice. 2012 Mar; 25(2):267–8CrossRefGoogle Scholar
  13. 13.
    Rusz, J., Cmejla, R., Tykalova, T., Ruzickova, H., Klempir, J., Majerova, V., Picmausova, J., Roth, J., Ruzicka, E.: Imprecise vowel articulation as a potential early marker of Parkinson’s disease: effect of speaking task. Journal of the Acoustical Society of America 134(3), 2171–2181 (2013)CrossRefGoogle Scholar
  14. 14.
    Haderlein, T., Nöth, E., Herbordt, W., Kellermann, W., Niemann, H.: Using artificially reverberated training data in distant-talking ASR. In: Matoušek, V., Mautner, P., Pavelka, T. (eds.) TSD 2005. LNCS (LNAI), vol. 3658, pp. 226–233. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  15. 15.
    Herbordt, W.: Combination of robust adaptive beamforming with acoustic echo cancellation for acoustic human/machine interfaces. Ph.D. thesis, University Erlangen-Nuremberg, Germany, January 2004Google Scholar
  16. 16.
    Harel, B.T., Cannizzaro, M.S., Cohen, H., Reilly, N., Snyder, P.J.: Acoustic characteristics of Parkinsonian speech: A potential biomarker of early disease progression and treatment. Journal of Neurolinguistics 17, 439–453 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Juan Rafael Orozco-Arroyave
    • 1
    • 2
  • Tino Haderlein
    • 2
  • Elmar Nöth
    • 2
  1. 1.Faculty of EngineeringUniversidad de Antioquia UdeAMedellínColombia
  2. 2.Pattern Recognition LabFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations