Entity-Oriented Sentiment Analysis of Tweets: Results and Problems

  • Natalia LoukachevitchEmail author
  • Yuliya Rubtsova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9302)


This paper summarizes the results of the reputation-oriented Twitter task, which was held as part of SentiRuEval evaluation of Russian sentiment-analysis systems. The tweets in two domains: telecom companies and banks - were included in the evaluation. The task was to determine if an author of a tweet has a positive or negative attitude to a company mentioned in the message. The main issue of this paper is to analyze the current state and problems of approaches applied by the participants.


Sentiment analysis Sentiment classification Social network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: the good the bad and the omg! In: ICWSM, vol. 11, pp. 538–541 (2011)Google Scholar
  2. 2.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREC, vol. 10, pp. 1320–1326 (2010)Google Scholar
  3. 3.
    Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of twitter data. In: Proceedings of the Workshop on Languages in Social Media, pp. 30–38. Association for Computational Linguistics (2011)Google Scholar
  4. 4.
    Rubtsova, Y.V.: Development and research domain independent sentiment classifier. SPIIRAS Proceedings 5(36), 59–77 (2014)CrossRefGoogle Scholar
  5. 5.
    Nakov, P., Kozareva, Z., Ritter, A., Rosenthal, S., Stoyanov, V., Wilson, T.: Semeval-2013 task 2: Sentiment analysis in Twitter (2013)Google Scholar
  6. 6.
    Rosenthal, S., Nakov, P., Ritter, A., Stoyanov, V.: Semeval-2014 task 9: sentiment analysis in twitter. In: Proc. SemEval (2014)Google Scholar
  7. 7.
    Amigo, E., Corujo, A., Gonzalo, J., Meij, E., de Rijke, M.: Overview of RepLab 2012: evaluating online reputation management systems. In: CLEF 2012 Evaluation Labs and Workshop Notebook Papers (2012)Google Scholar
  8. 8.
    Amigó, E., et al.: Overview of RepLab 2013: evaluating online reputation monitoring systems. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 333–352. Springer, Heidelberg (2013) Google Scholar
  9. 9.
    Chetviorkin, I., Loukachevitch, N.: Evaluating sentiment analysis systems in Russian. In: Proceedings of BSNLP Workshop, ACL 2013, pp. 12–16 (2013)Google Scholar
  10. 10.
    Read, J.: Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In: Proceedings of the ACL Student Research Workshop, pp. 43–48. Association for Computational Linguistics (2005)Google Scholar
  11. 11.
    Hogenboom, A., Bal, D., Frasincar, F., Bal, M., de Jong, F., Kaymak, U.: Exploiting emoticons in sentiment analysis. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 703–710. ACM (2013)Google Scholar
  12. 12.
    Chetviorkin, I., Loukachevitch, N.V.: Extraction of Russian sentiment lexicon for product meta-domain. In: COLING, pp. 593–610. Citeseer (2012)Google Scholar
  13. 13.
    Feng, S., Kang, J.S., Kuznetsova, P., Choi, Y.: Connotation lexicon: a dash of sentiment beneath the surface meaning. In: ACL (1), pp. 1774–1784 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Research Computing CenterMoscow State UniversityMoscowRussia
  2. 2.A.P. Ershov Institute of Informatics SystemsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations