LifeCLEF 2015: Multimedia Life Species Identification Challenges

  • Alexis Joly
  • Hervé Goëau
  • Hervé Glotin
  • Concetto Spampinato
  • Pierre Bonnet
  • Willem-Pier Vellinga
  • Robert Planqué
  • Andreas Rauber
  • Simone Palazzo
  • Bob Fisher
  • Henning Müller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9283)


Using multimedia identification tools is considered as one of the most promising solutions to help bridging the taxonomic gap and build accurate knowledge of the identity, the geographic distribution and the evolution of living species. Large and structured communities of nature observers (e.g. eBird, Xeno-canto, Tela Botanica, etc.) as well as big monitoring equipments have actually started to produce outstanding collections of multimedia records. Unfortunately, the performance of the state-of-the-art analysis techniques on such data is still not well understood and is far from reaching the real world’s requirements. The LifeCLEF lab proposes to evaluate these challenges around 3 tasks related to multimedia information retrieval and fine-grained classification problems in 3 living worlds. Each task is based on large and real-world data and the measured challenges are defined in collaboration with biologists and environmental stakeholders in order to reflect realistic usage scenarios. This paper presents more particularly the 2015 edition of LifeCLEF. For each of the three tasks, we report the methodology and the data sets as well as the raw results and the main outcomes.


Deep Learning Convolutional Neural Network Mean Average Precision Working Note Fisher Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    MAED 2012: Proceedings of the 1st ACM International Workshop on Multimedia Analysis for Ecological Data. ACM, New York (2012). 433127Google Scholar
  2. 2.
    Proc. of the first workshop on Machine Learning for Bioacoustics (2013)Google Scholar
  3. 3.
    Aptoula, E., Yanikoglu, B.: Morphological features for leaf based plant recognition. In: Proc. IEEE Int. Conf. Image Process., Melbourne, Australia, p. 7 (2013)Google Scholar
  4. 4.
    Backes, A.R., Casanova, D., Bruno, O.M.: Plant leaf identification based on volumetric fractal dimension. International Journal of Pattern Recognition and Artificial Intelligence 23(6), 1145–1160 (2009)CrossRefGoogle Scholar
  5. 5.
    Hilton-Taylor, C., Baillie, J.E.M., Stuart, S.: 2004 iucn red list of threatened species: a global species assessment. IUCN, Gland, Switzerland and Cambridge, UK (2004)Google Scholar
  6. 6.
    Bishop, C.M., et al.: Pattern recognition and machine learning, vol. 4. Springer New York (2006)Google Scholar
  7. 7.
    Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)zbMATHGoogle Scholar
  8. 8.
    Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X.Z., Raich, R., Hadley, S.J., Hadley, A.S., Betts, M.G.: Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach. The Journal of the Acoustical Society of America 131, 4640 (2012)CrossRefGoogle Scholar
  9. 9.
    Cai, J., Ee, D., Pham, B., Roe, P., Zhang, J.: Sensor network for the monitoring of ecosystem: bird species recognition. In: 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, ISSNIP 2007, pp. 293–298, December 2007Google Scholar
  10. 10.
    Cerutti, G., Tougne, L., Vacavant, A., Coquin, D.: A parametric active polygon for leaf segmentation and shape estimation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., Di Verdi, S., Yi-Jen, C., Ming, J. (eds.) ISVC 2011, Part I. LNCS, vol. 6938, pp. 202–213. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  11. 11.
    Champ, J., Lorieul, T., Servajean, M., Joly, A.: A comparative study of fine-grained classification methods in the context of the lifeclef plant identification challenge 2015. In: Working Notes of CLEF 2015 Conference (2015)Google Scholar
  12. 12.
    Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: Pcanet: a simple deep learning baseline for image classification? arXiv preprint arXiv:1404.3606 (2014)
  13. 13.
    Choi, S.: Plant identification with deep convolutional neural network: Snumedinfo at lifeclef plant identification task 2015. In: Working Notes of CLEF 2015 Conference (2015)Google Scholar
  14. 14.
    Concetto, S., Palazzo, S., Fisher, B., Boom, B.: Lifeclef fish identification task 2014. In: CLEF Working Notes 2015 (2015)Google Scholar
  15. 15.
    Dufour, O., Artieres, T., Glotin, H., Giraudet, P.: Clusterized mel filter cepstral coefficients and support vector machines for bird song idenfication (2013)Google Scholar
  16. 16.
    Evans, F.: Detecting fish in underwater video using the em algorithm. In: Proceedings of the 2003 International Conference on Image Processing, ICIP 2003, vol. 3, pp. III-1029-32 vol. 2, September 2003Google Scholar
  17. 17.
    Farnsworth, E.J., Chu, M., Kress, W.J., Neill, A.K., Best, J.H., Pickering, J., Stevenson, R.D., Courtney, G.W., VanDyk, J.K., Ellison, A.M.: Next-generation field guides. BioScience 63(11), 891–899 (2013)CrossRefGoogle Scholar
  18. 18.
    K. J. Gaston and M. A. O’Neill. Automated species identification: why not? 359(1444), 655–667 (2004)Google Scholar
  19. 19.
    Ge, Z., Mccool, C., Corke, P.: Content specific feature learning for fine-grained plant classification. In: Working Notes of CLEF 2015 Conference (2015)Google Scholar
  20. 20.
    Glotin, H., Sueur, J.: Overview of the first international challenge on bird classification (2013)Google Scholar
  21. 21.
    Goëau, H., Bonnet, P., Joly, A., Bakić, V., Barbe, J., Yahiaoui, I., Selmi, S., Carré, J., Barthélémy, D., Boujemaa, N., et al.: Pl@ ntnet mobile app. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 423–424. ACM (2013)Google Scholar
  22. 22.
    Goëau, H., Bonnet, P., Joly, A., Boujemaa, N., Barthélémy, D., Molino, J.-F., Birnbaum, P., Mouysset, E., Picard, M.: The ImageCLEF 2011 plant images classification task. In: CLEF Working Notes (2011)Google Scholar
  23. 23.
    Goëau, H., Bonnet, P., Joly, A., Yahiaoui, I., Barthelemy, D., Boujemaa, N., Molino, J.-F.: The imageclef 2012 plant identification task. In: CLEF Working Notes (2012)Google Scholar
  24. 24.
    Goëau, H., Glotin, H., Vellinga, W.-P., Planque, R., Rauber, A., Joly, A.: Lifeclef bird identification task 2015. In: CLEF Working Notes 2015 (2015)Google Scholar
  25. 25.
    Goëau, H., Glotin, H., Vellinga, W.-P., Rauber, A.: Lifeclef bird identification task 2014. In: CLEF Working Notes 2014 (2014)Google Scholar
  26. 26.
    Goëau, H., Joly, A., Bonnet, P.: Lifeclef plant identification task 2015. In: CLEF Working Notes 2015 (2015)Google Scholar
  27. 27.
    Goëau, H., Joly, A., Selmi, S., Bonnet, P., Mouysset, E., Joyeux, L., Molino, J.-F., Birnbaum, P., Bathelemy, D., Boujemaa, N.: Visual-based plant species identification from crowdsourced data. In: ACM Conference on Multimedia, pp. 813–814 (2011)Google Scholar
  28. 28.
    Hazra, A., Deb, K., Kundu, S., Hazra, P., et al.: Shape oriented feature selection for tomato plant identification. International Journal of Computer Applications Technology and Research 2(4), 449–454 (2013)CrossRefGoogle Scholar
  29. 29.
    Joly, A., Champ, J., Buisson, O.: Shared nearest neighbors match kernel for bird songs identification - lifeclef 2015 challenge. In: Working Notes of CLEF 2015 Conference (2015)Google Scholar
  30. 30.
    Joly, A., Goëau, H., Bonnet, P., Bakić, V., Barbe, J., Selmi, S., Yahiaoui, I., Carré, J., Mouysset, E., Molino, J.-F., et al.: Interactive plant identification based on social image data. Ecological Informatics 23, 22–34 (2014)CrossRefGoogle Scholar
  31. 31.
    Joly, A., Goëau, H., Bonnet, P., Bakic, V., Molino, J.-F., Barthélémy, D., Boujemaa, N.: The imageclef plant identification task 2013. In: International Workshop on Multimedia Analysis for Ecological Data, Barcelone, Espagne, October 2013Google Scholar
  32. 32.
    Joly, A., Müller, H., Goëau, H., Glotin, H., Spampinato, C., Rauber, A., Bonnet, P., Vellinga, W.-P., Fisher, B.: Lifeclef 2014: multimedia life species identification challengesGoogle Scholar
  33. 33.
    Kebapci, H., Yanikoglu, B., Unal, G.: Plant image retrieval using color, shape and texture features. The Computer Journal 54(9), 1475–1490 (2011)CrossRefGoogle Scholar
  34. 34.
    Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares, J.V.B.: Leafsnap: a computer vision system for automatic plant species identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 502–516. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  35. 35.
    Lasseck, M.: Improved automatic bird identification through decision tree based feature selection and bagging. In: Working Notes of CLEF 2015 Conference (2015)Google Scholar
  36. 36.
    Le, T.-L., Dng, D.N., Vu, H., Nguyen, T.-N.: Mica at lifeclef 2015: multi-organ plant identification. In: Working Notes of CLEF 2015 Conference (2015)Google Scholar
  37. 37.
    Lee, D.-J., Schoenberger, R.B., Shiozawa, D., Xu, X., Zhan, P.: Contour matching for a fish recognition and migration-monitoring system. In: Optics East, pp. 37–48. International Society for Optics and Photonics (2004)Google Scholar
  38. 38.
    Meza, I., Espino-Gamez, A., Solano, F., Villarreal, E\(.\) Google Scholar
  39. 39.
    Mokhov, S.A.: A marfclef approach to lifeclef 2015 tasks. In: Working Notes of CLEF 2015 Conference (2015)Google Scholar
  40. 40.
    Morais, E., Campos, M., Padua, F., Carceroni, R.: Particle filter-based predictive tracking for robust fish counting. In: 18th Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI 2005. pp. 367–374, October 2005Google Scholar
  41. 41.
    E. A. O. M. Mostafa Mehdipour Ghazi, Yanikoglu, B., Ozdemir, M.C.: Sabanci-okan system in lifeclef 2015 plant identification competition. In: Working Notes of CLEF 2015 Conference (2015)Google Scholar
  42. 42.
    Mouine, S., Yahiaoui, I., Verroust-Blondet, A.: Advanced shape context for plant species identification using leaf image retrieval. In: ACM International Conference on Multimedia Retrieval, pp. 49:1–49:8 (2012)Google Scholar
  43. 43.
    Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds.): ImageCLEF – Experimental Evaluation in Visual Information Retrieval. The Springer International Series on Information Retrieval, vol. 32. Springer, Heidelberg (2010) zbMATHGoogle Scholar
  44. 44.
    Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  45. 45.
    Ravanbakhsh, M., Shortis, M.R., Shafait, F., Mian, A., Harvey, E.S., Seager, J.W.: Automated fish detection in underwater images using shape-based level sets. The Photogrammetric Record 30(149), 46–62 (2015)CrossRefGoogle Scholar
  46. 46.
    Reyes, A.K., Caicedo, J.C., Camargo, J.E.: Fine-tuning deep convolutional networks for plant recognition. In: Working Notes of CLEF 2015 Conference (2015)Google Scholar
  47. 47.
    Rodriguez, A., Rico-Diaz, A.J., Rabuñal, J.R., Puertas, J., Pena, L.: Fish monitoring and sizing using computer vision. In: Vicente, J.M.F., Álvarez-Sánchez, J.R., López, F.P., Toledo-Moreo, F.J., Adeli, H. (eds.) Bioinspired Computation in Artificial Systems. LNCS, vol. 9108, pp. 419–428. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  48. 48.
    Shortis, M.R., Ravanbakskh, M., Shaifat, F., Harvey, E.S., Mian, A., Seager, J.W., Culverhouse, P.F., Cline, D.E., Edgington, D.R.: A review of techniques for the identification and measurement of fish in underwater stereo-video image sequences. In: SPIE Optical Metrology 2013, pp. 87910G–87910G. International Society for Optics and Photonics (2013)Google Scholar
  49. 49.
    Sigler, M., DeMaster, D., Boveng, P., Cameron, M., Moreland, E., Williams, K., Towler, R.: Advances in methods for marine mammal and fish stock assessments: Thermal imagery and camtrawl. Marine Technology Society Journal 49(2), 99–106, 2015–03-01T00:00:00Google Scholar
  50. 50.
    Spampinato, C., Chen-Burger, Y.-H., Nadarajan, G., Fisher, R.B.: Detecting, tracking and counting fish in low quality unconstrained underwater videos. In: VISAPP (2), pp. 514–519. Citeseer (2008)Google Scholar
  51. 51.
    Stowell, D.: Birdclef 2015 submission: unsupervised feature learning from audio. In: Working Notes of CLEF 2015 Conference (2015)Google Scholar
  52. 52.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. arXiv preprint arXiv:1409.4842 (2014)
  53. 53.
    Towsey, M., Planitz, B., Nantes, A., Wimmer, J., Roe, P.: A toolbox for animal call recognition. Bioacoustics 21(2), 107–125 (2012)CrossRefGoogle Scholar
  54. 54.
    Trifa, V.M., Kirschel, A.N., Taylor, C.E., Vallejo, E.E.: Automated species recognition of antbirds in a mexican rainforest using hidden markov models. The Journal of the Acoustical Society of America 123, 2424 (2008)CrossRefGoogle Scholar
  55. 55.
    Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. International Journal of Computer Vision 104(2), 154–171 (2013)CrossRefGoogle Scholar
  56. 56.
    Voorhees, E.M., et al.: The trec-8 question answering track report. In: TREC, vol. 99, pp. 77–82 (1999)Google Scholar
  57. 57.
    Wheeler, Q.D., Raven, P.H., Wilson, E.O.: Taxonomy: Impediment or expedient? Science 303(5656), 285 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexis Joly
    • 1
  • Hervé Goëau
    • 2
  • Hervé Glotin
    • 3
  • Concetto Spampinato
    • 4
  • Pierre Bonnet
    • 5
  • Willem-Pier Vellinga
    • 6
  • Robert Planqué
    • 6
  • Andreas Rauber
    • 7
  • Simone Palazzo
    • 4
  • Bob Fisher
    • 8
  • Henning Müller
    • 9
  1. 1.Inria, LIRMMMontpellierFrance
  2. 2.InriaMontpellierFrance
  3. 3.IUF & University de ToulonToulonFrance
  4. 4.University of CataniaCataniaItaly
  5. 5.CIRAD-AmapMontpellierFrance
  6. 6.Xeno-canto FoundationDrachtenThe Netherlands
  7. 7.Vienna University of TechnologyViennaAustria
  8. 8.University of EdinburghEdinburghUK
  9. 9.HES-SOSierreSwitzerland

Personalised recommendations