Advertisement

Towards Automatic Large-Scale Identification of Birds in Audio Recordings

  • Mario LasseckEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9283)

Abstract

This paper presents a computer-based technique for bird species identification at large scale. It automatically identifies multiple species simultaneously in a large number of audio recordings and provides the basis for the best scoring submission to the LifeCLEF 2014 Bird Identification Task. The method achieves a Mean Average Precision of 51.1% on the test set and 53.9% on the training set with an Area Under the Curve of 91.5% during cross-validation. Besides a general description of the underlying classification approach a number of additional research questions are addressed regarding the choice of features, selection of classifier hyperparameters and method of classification.

Keywords

Bird Identification Information retrieval Biodiversity Spectrogram segmentation Median Clipping Template matching Decision trees 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frommolt, K.-H., Bardeli, R., Clausen, M. (eds.) Computational bioacoustics for assessing biodiversity. Proc. of the int. expert meeting on IT-based detection of bioacoustical patterns (2008)Google Scholar
  2. 2.
    Bardeli, R., Wolff, D., Kurth, F., Koch, M., Tauchert, K.-H., Frommolt, K.-H.: Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recognition Letter 31(23), 1524–1534 (2009)Google Scholar
  3. 3.
    Briggs, F., Lakshminarayanan, B., Neal, L., et al.: Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach. The Journal of the Acoustical Society of America 131(6), 4640–4650 (2012). doi: 10.1121/1.4707424 CrossRefGoogle Scholar
  4. 4.
    Potamitis, I.: Automatic Classification of Taxon-Rich Community Recorded in the Wild. PLoS ONE 9(5), e96936 (2014). doi: 10.1371/journal.pone.0096936 CrossRefGoogle Scholar
  5. 5.
    Glotin, H., Goëau, H., Vellinga, W-P., Rauber, A.: LifeCLEF bird identification task 2014. In: CLEF working notes (2014)Google Scholar
  6. 6.
    Cappellato, L., Ferro, N., Halvey, M., Kraaij, W. (eds.) CLEF 2014 Labs and Workshops, Notebook Papers. CEUR Workshop Proceedings. (CEUR-WS.org), ISSN 1613-0073, (2014). http://ceur-ws.org/Vol-1180/
  7. 7.
    Eyben, F., Wöllmer, M., Schuller, B.: openSMILE - the munich versatile and fast open-source audio feature extractor. In: Proc. ACM Multimedia (MM), pp. 1459–1462. ACM, Florence, Italy (2010). ISBN 978-1-60558-933-6, doi: 10.1145/1873951.1874246
  8. 8.
    Geiger, J.T., Schuller, B., Rigoll, G.: Large-scale audio feature extraction and svm for acoustic scenes classification. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2013. IEEE (2013)Google Scholar
  9. 9.
    Lewis, J.P.: Fast Normalized Cross-Correlation. Industrial Light and Magic (1995)Google Scholar
  10. 10.
    Fodor, G.: The ninth annual MLSP competition: first place. In: 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–2 (2013). doi: 10.1109/MLSP.2013.6661932
  11. 11.
    Lasseck, M.: Bird song classification in field recordings: winning solution for NIPS4B 2013 competition. In: Glotin, H. et al. (eds.) Proc. of int. symp. Neural Information Scaled for Bioacoustics, sabiod.org/nips4b, joint to NIPS, Nevada, pp. 176–181 (2013)Google Scholar
  12. 12.
    Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. JMLR 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Guyon, I., Weston, J., Barnhill, S., et al.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1–3), 389–422 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning 63(1), 3–42 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Joly, A., Goëau, H., Bonnet, P. et al.: Are multimedia identification tools biodiversity-friendly? In: Proceedings of the 3rd ACM International Workshop on Multimedia Analysis for Ecological Data (2014). doi: 10.1145/2661821.2661826
  16. 16.
    Adelson, E.H., Anderson, C.H., Bergen, J.R., et al.: Pyramid Method in Image Processing. RCA Engineer 29(6), 33–41 (1984)Google Scholar
  17. 17.
    Animal Sound Archive Berlin. http://www.animalsoundarchive.org

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Animal Sound ArchiveMuseum für NaturkundeBerlinGermany

Personalised recommendations