Advertisement

Weighted Boolean Formula Games

  • Marios MavronicolasEmail author
  • Burkhard Monien
  • Klaus W. Wagner
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9295)

Abstract

We introduce weighted boolean formula games (WBFG) as a new class of succinct games. Each player has a set of boolean formulas she wants to get satisfied; the formulas involve a ground set of boolean variables each of which is controlled by some player. The payoff of a player is a weighted sum of the values of her formulas. We consider both pure equilibria and their refinement of payoff-dominant equilibria [34], where every player is no worse-off than in any other pure equilibrium. We present both structural and complexity results:
  • We consider mutual weighted boolean formula games (MWBFG), a subclass of WBFG making a natural mutuality assumption on the formulas of players. We present a very simple exact potential for MWBFG. We establish a polynomial monomorphism from certain classes of weighted congestion games to subclasses of WBFG and MWBFG, respectively, indicating their rich structure.

  • We present a collection of complexity results about decision (and search) problems for both pure and payoff-dominant equilibria in WBFG. The precise complexities depend crucially on five parameters: (i) the number of players; (ii) the number of variables per player; (iii) the number of formulas per player; (iv) the weights in the payoff functions (whether identical or not), and (v) the syntax of the formulas. These results imply that, unless the polynomial hierarchy collapses, decision (and search) problems for payoff-dominant equilibria are harder than for pure equilibria.

Keywords

Payoff Function Boolean Variable Boolean Formula Propositional Formula Congestion Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Paul Spirakis and Karsten Tiemann for many helpful discussions and comments on earlier versions of this work.

References

  1. 1.
    Álvarez, C., Gabarró, J., Serna, M.: Equilibria problems on games: complexity versus succinctness. J. Comput. Syst. Sci. 77(6), 1172–1197 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aumann, R.J., Sorin, S.: Cooperation and bounded recall. Game. Econ. Behav. 1(1), 5–39 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bacharach, M., Bernasconi, M.: An experimental study of the variable frame theory of focal points. Game. Econ. Behav. 19(1), 1–45 (1997)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bilò, V.: On satisfiability games and the power of congestion games. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 231–240. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  5. 5.
    Bilò, V., Mavronicolas, M.: The complexity of decision problems about nash equilibria in win-lose games. In: Serna, M. (ed.) SAGT 2012. LNCS, vol. 7615, pp. 37–48. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Blonski, M.: Characterization of pure-strategy equilibria in finite anonymous games. J. Math. Econ. 34(2), 225–233 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J., Zanuttini, B.: Boolean games revisited. In: Proceedings of the 17th European Conference on Artificial Intelligence, Series Frontiers in Artificial Intelligence and Applications, vol. 141, pp. 265–269, August/September 2006Google Scholar
  8. 8.
    Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J.: Compact preference representation for boolean games. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 41–50. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  9. 9.
    Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J., Zanuttini, B.: Compact preference representation and boolean games. Auton. Agents Multi-Agent Syst. 18(1), 1–35 (2009)CrossRefGoogle Scholar
  10. 10.
    Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J.: Dependencies between players in boolean games. Int. J. Approximate Reasoning 50(6), 899–914 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J.: Effectivity functions and efficient coalitions in boolean games. Synthese 187(1 Supplement), 73–103 (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Brandt, F., Fischer, F., Holzer, M.: Symmetries and the complexity of pure nash equilibrium. J. Comput. Syst. Sci. 75(3), 163–177 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Case, J.: A class of games having pareto optimal nash equilibria. J. Optim. Theory Appl. 13, 379–385 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of two-player nash equilibria. J. ACM 56(3), 14 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Colman, A.M., Bacharach, M.: Payoff dominance and the stackelberg heuristic. Theory Decis. 43(1), 1–19 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Conitzer, V., Sandholm, T.: Complexity results about nash equilibria. Game. Econ. Behav. 63(2), 621–641 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Daskalakis, C., Fabrikant, A., Papadimitriou, C.: The game world is flat: the complexity of nash equilibria in succinct games. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 513–524. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  18. 18.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Daskalakis, K., Papadimitriou, C.: The complexity of games on highly regular graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 71–82. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  20. 20.
    Dunkel, J., Schulz, A.S.: On the complexity of pure-strategy nash equilibria in congestion and local-effect games. MatH. Oper. Res. 33(4), 851–868 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dunne, P.E., van der Hoek, W.: Representation and complexity in boolean games. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 347–359. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  22. 22.
    Dunne, P.E., Wooldridge, M.: Towards tractable boolean games. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 939–946, June 2012Google Scholar
  23. 23.
    Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure nash equilibria. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 604–612, June 2004Google Scholar
  24. 24.
    Feigenbaum, J., Koller, D., Shor, P.: A game-theoretic classification of interactive complexity classes. In: Proceedings of the 10th Annual IEEE Conference on Structure in Complexity Theory, pp. 227–237, June 1995Google Scholar
  25. 25.
    Fischer, F., Holzer, M., Katzenbeisser, S.: The influence of neighbourhood and choice on the complexity of finding pure nash equilibria. Inf. Process. Lett. 99(6), 239–245 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Fortnow, L., Impagliazzo, R., Kabanets, V., Umans, C.: On the complexity of succinct zero-sum games. Comput. Complex. 17(3), 353–376 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. Theoret. Comput. Sci. 348(2–3), 226–239 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gabarró, J., García, A., Serna, M.: The complexity of game isomorphism. Theoret. Comput. Sci. 412(48), 6675–6695 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Gairing, M., Monien, B., Tiemann, K.: Routing (un-)splittable flow in games with player-specific linear latency functions. ACM Trans. Algorithms 7(3), 31 (2011)CrossRefzbMATHGoogle Scholar
  30. 30.
    Gale, D., Kuhn, H.W., Tucker, A.W.: On symmetric games. Contributions to the Theory of Games. Annals of Mathematics Studies, vol. 24. Princeton University Press, Princeton (1950) zbMATHGoogle Scholar
  31. 31.
    Gottlob, G., Greco, G., Scarcello, F.: Pure nash equilibria: hard and easy games. J. Artif. Intell. Res. 24, 357–406 (2005)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Harrenstein, P., van der Hoek, W., Meyer, J.-J., Witteveen, C.: Boolean games. In: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 287–298, July 2001Google Scholar
  33. 33.
    Harrenstein, P.: Logic in conflict, Ph.D. thesis, Utrecht University (2004)Google Scholar
  34. 34.
    Harsanyi, J.C., Selten, R.: A General Theory of Equilibrium Selection in Games. The MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  35. 35.
    Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Exact analysis of dodgson elections: lewis carroll’s 1876 voting system is complete for parallel access to \({\cal {NP}}\). J. ACM 44(6), 806–825 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Howson, J.T.: Equilibria of polymatrix games(Part I). Manag. Sci. 18(5), 312–318 (1972)CrossRefzbMATHGoogle Scholar
  37. 37.
    Ianovski, E.: \({ \text{ DValue }}\) for boolean games is \({\cal EXP}\)-Hard. In: CoRR, abs/1403.7428 (2014)Google Scholar
  38. 38.
    Ianovski, E., Ong, L.: \(\exists { \text{ GuaranteeNash }}\) is \({\cal NEXP}\)-Hard. In: Proceedings of the 14th International Conference on Knowledge Representation and Reasoning, July 2014Google Scholar
  39. 39.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Kalai, E., Samet, D.: Unanimity games and pareto optimality. Int. J. Game Theory 14(1), 41–50 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory. In: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pp. 253–260, August 2001Google Scholar
  42. 42.
    Krapchenko, V.M.: Complexity of the realization of a linear function in the class of \(\Pi \)-circuits. Math. Notes Acad. Sci. USSR 9(1), 21–23 (1971)Google Scholar
  43. 43.
    Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci. 36(3), 490–509 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Leyton-Brown, K., Tennenholtz, M.: Local-effect games. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 772–780, August 2003Google Scholar
  45. 45.
    Mavronicolas, M., Milchtaich, I., Monien, B., Tiemann, K.: Congestion games with player-specific constants. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 633–644. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  46. 46.
    Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential time. In: Proceedings of the 13th Annual IEEE Symposium on Switching and Automata Theory, pp. 125–129, October 1972Google Scholar
  47. 47.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Game. Econ. Behav. 13(1), 111–124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Monderer, D., Shapley, L.S.: Potential games. Game. Econ. Behav. 14(1), 124–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Nash, J.F.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)zbMATHGoogle Scholar
  51. 51.
    Papadimitriou, C.H., Roughgarden, T.: Computing correlated equilibria in multi-player games. J. ACM 55(3), 14 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Papadimitriou, C.H., Zachos, S.: Two remarks on the power of counting. In: Cremers, A.B., Kriegel, H.-P. (eds.) Theoretical Computer Science. LNCS, vol. 145, pp. 269–275. Springer, Heidelberg (1983) CrossRefGoogle Scholar
  53. 53.
    Paterson, M., Valiant, L.G.: Circuit size is nonlinear in depth. Theoret. Comput. Sci. 2(3), 397–400 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Paul, W.: A 2.5 lower bound on the combinatorial complexity of boolean functions. SIAM J. Comput. 6(3), 427–443 (1977)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Rosenthal, R.W.: A class of games possessing pure strategy nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Sahni, S.: Computationally related problems. SIAM J. Comput. 3(4), 262–279 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Schoenebeck, G., Vadhan, S.: The computational complexity of nash equilibria in concisely represented games. ACM Trans. Comput. Theory 4(2), 4 (2012)CrossRefzbMATHGoogle Scholar
  58. 58.
    Stockmeyer, L.J.: The polynomial time hierarchy. Theoret. Comput. Sci. 3(1), 1–22 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Vollmer, H., Wagner, K.W.: Complexity classes of optimization functions. Inf. Comput. 120(2), 198–218 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Voorneveld, M., Borm, P., van Megan, F., Tijs, S., Facchini, G.: Congestion games and potentials reconsidered. Int. Game Theory Rev. 1(3–4), 283–299 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Wagner, K.W.: More complicated questions about maxima and minima, and some closures of \({\cal NP}\). Theoret. Comput. Sci. 51(1–2), 53–80 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Wagner, K.W.: Bounded query classes. SIAM J. Comput. 19(5), 833–846 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Wegener, I.: The Complexity of Boolean Functions. Wiley, New York (1991)zbMATHGoogle Scholar
  64. 64.
    Wrathall, C.: Complete sets and the polynomial time hierarchy. Theoret. Comput. Sci. 3(1), 23–33 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marios Mavronicolas
    • 1
    Email author
  • Burkhard Monien
    • 2
  • Klaus W. Wagner
    • 3
  1. 1.Department of Computer ScienceUniversity of CyprusNicosiaCyprus
  2. 2.Faculty of Electrical Engineering, Computer Science and MathematicsUniversity of PaderbornPaderbornGermany
  3. 3.Lehrstuhl für Theoretische Informatik, Institut für InformatikJulius-Maximilians-Universität WürzburgWürzburgGermany

Personalised recommendations