Stability in Heterogeneous Dynamic Multimedia Networks

  • Dimitrios Koukopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9295)


Internet and other multimedia packet-switched networks are heterogeneous due to the simultaneous running (composition) of different contention-resolution protocols over different network hosts and the existence of various types of network links. Also, real networks are dynamic in their nature due to intentional or unintentional changes on network link service rates or tra nsient link failures. Our interest is focused on FIFO compositions with other contention-resolution protocols due to the FIFO popularity for offering best-effort services in packet-switched networks. A packet-switched network is stable, if the number of packets in the network remains bounded at all times against any adversary. We use an enhanced adversarial framework that is based on an adversary that controls packet injection rates, along with packet paths, and manipulates link slowdowns or capacities. Within this framework, we study the impact of specific compositions of FIFO with other protocols on the network stability using as a test-bed specific network topologies which have been proved forbidden for stability for a single protocol, fixed link slowdowns/capacities and packet paths without repeated links/edges. Our results suggest that the instability behavior of a network using FIFO compositions under adversarial attacks, that dynamically change link slowdowns/capacities, is not only maintained, but, also, may become worse than in the case of attacks that do not change slowdowns/capacities or when a single protocol, like FIFO, is employed on all network queues for contention-resolution. We believe that this study can advance the research for the provision of trustworthy heterogeneous networks.


  1. 1.
    Alvarez, C., Blesa, M., Serna, M.: A characterization of universal stability in the adversarial queuing model. SIAM J. Comput. 34, 41–66 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alvarez, C., Blesa, M., Serna, M.: The robustness of stability under link and node failures. Theor. Comput. Sci. 412, 6855–6878 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Andrews, M.: Instability of FIFO in the permanent sessions model at arbitrarily small network loads. ACM Trans. Algorithms 5(3), 1–29 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andrews, M., Awerbuch, B., Fernández, A., Kleinberg, J., Leighton, T., Liu, Z.: Universal stability results for greedy contention-resolution protocols. J. ACM 48, 39–69 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berger, D., Karsten, M., Schmitt, J.: On the relevance of adversarial queueing theory in practice. In: Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems, pp. 343–354 (2014)Google Scholar
  6. 6.
    Berger, D., Karsten, M., Schmitt, J.: Simulation of adversarial scenarios in OMNeT++: putting adversarial queueing theory from its head to feet. In: Proceedings of the 6th International ICST Conference on Simulation Tools and Techniques, pp. 291–298 (2013)Google Scholar
  7. 7.
    Bhattacharjiee, R., Goel, A., Lotker, Z.: Instability of FIFO at arbitrarily low rates in the adversarial queueing model. SIAM J. Comput. 34(2), 318–332 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Blesa, M.J.: Deciding stability in packet-switched FIFO networks under the adversarial queuing model in polynomial time\(^{,}\). In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 429–441. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  9. 9.
    Blesa, M., Calzada, D., Fernandez, A., Lopez, L.: Adversarial queueing model for continuous network dynamics. Theory Comput. Syst. 44, 304–331 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.: Adversarial queueing theory. J. ACM 48, 13–38 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Borodin, A., Ostrovsky, R., Rabani, Y.: Stability preserving transformations: packet routing networks with edge capacities and speeds. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 601–610 (2001)Google Scholar
  12. 12.
    Chlebus, B.S., Cholvi, V., Kowalski, D.R.: Stability of adversarial routing with feedback. In: Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 206–220. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple access channel. ACM Trans. Algorithms 8(1), article 5 (2012). doi: 10.1145/2071379.2071384
  14. 14.
    Cholvi, V., Echague, J., Fernandez, A.: Stability of FIFO networks under adversarial models: state of the art, computer networks. Int. J. Comput. Telecommun. Netw. 51(15), 4460–4474 (2007)CrossRefGoogle Scholar
  15. 15.
    Diaz, J., Koukopoulos, D., Nikoletseas, S., Serna, M., Spirakis, P., Thilikos, D.: Stability and non-stability of the FIFO protocol. In: Proceedings of the 13th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 48–52 (2001)Google Scholar
  16. 16.
    Floyd, S., Paxson, V.: Difficulties in simulating the Internet. IEEE/ACM Trans. Netw. 9, 392–403 (2001)CrossRefGoogle Scholar
  17. 17.
    Koukopoulos, D.: Instability behaviour of heterogeneous multimedia networks under dynamic adversarial attacks. J. Math. Comput. Model. 57, 2671–2684 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Koukopoulos, D.: The impact of FIFO compositions with other protocols on the stability of multimedia networks facing dynamic adversarial attacks. In: Proceedings of the 5th International Conference on Multimedia Information Networking and Security, pp. 575–578 (2013)Google Scholar
  19. 19.
    Koukopoulos, D.: The impact of dynamic adversarial attacks on the stability of heterogeneous multimedia networks. J. Comput. Commun. 33, 1695–1706 (2010)CrossRefGoogle Scholar
  20. 20.
    Koukopoulos, D.: Stability in heterogeneous multimedia networks under adversarial attacks. J. Univ. Comput. Sci. 14(2), 444–464 (2009)Google Scholar
  21. 21.
    Koukopoulos, D.: The impact of dynamic link slowdowns on network stability. In: Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks, pp. 340–345 (2005)Google Scholar
  22. 22.
    Koukopoulos, D., Mavronicolas, M., Nikoletseas, S., Spirakis, P.: The impact of network structure on the stability of greedy protocols. Theory Comput. Syst. 38, 425–460 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Koukopoulos, D., Mavronicolas, M., Nikoletseas, S., Spirakis, P.: On the stability of compositions of universally stable, greedy, contention-resolution protocols. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 88–102. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  24. 24.
    Koukopoulos, D., Mavronikolas, M., Spirakis, P.: Performance and stability bounds for dynamic networks. J. Parallel Distrib. Comput. 67, 386–399 (2007)CrossRefzbMATHGoogle Scholar
  25. 25.
    Koukopoulos, D., Mavronikolas, M., Spirakis, P.: The increase of the instability of networks due to quasi-static link capacities. J. Theor. Comput. Sci. 381, 44–56 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Koukopoulos, D., Mavronicolas, M., Spirakis, P.: Instability of networks with quasi-static link capacities. In: Proceedings of the 10th International Colloquium on Structural Information and Communication Complexity, pp. 179–194 (2003)Google Scholar
  27. 27.
    Koukopoulos, D.K., Nikolopoulos, S.D.: Heterogenous networks can be unstable at arbitrarily low injection rates. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 93–104. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  28. 28.
    Koukopoulos, D.K., Nikoletseas, S.E., Spirakis, P.G.: Stability issues in heterogeneous and fifo networks under the adversarial queueing model. In: Monien, B., Prasanna, V.K., Vajapeyam, S. (eds.) HiPC 2001. LNCS, vol. 2228, pp. 3–14. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  29. 29.
    Levine, D., Kessler, G.: Denial of service attacks. In: Kabay, M., Bosworth, S. (eds.) Computer Security Handbook, 4th edn. Wiley, New York (2002)Google Scholar
  30. 30.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)zbMATHGoogle Scholar
  31. 31.
    Moore, D., Shannon, C., Brown, D., Voelker, G., Savage, S.: Inferring Internet denial-of-service activity. ACM Trans. Comput. Syst. 24(2), 115–139 (2006)CrossRefGoogle Scholar
  32. 32.
    Weinard, M.: Deciding the FIFO stability of networks in polynomial time. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 81–92. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  33. 33.
    Yau, D., Lui, J., Liang, F., Yam, Y.: Defending against distributed denial-of-service attacks with max-min fair server-centric router throttles. IEEE/ACM Trans. Netw. 13(1), 29–42 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Cultural Heritage Management and New TechnologiesUniversity of PatrasAgrinioGreece

Personalised recommendations