Development of a Flexible Understanding of Place Value

  • Silke LadelEmail author
  • Ulrich KortenkampEmail author


In this chapter, we highlight the importance not only of an understanding of place value, but the importance of a flexible understanding. We describe the principles of our decimal place value system and the development processes of children. Embedded in artefact-centric activity theory, we present an education-oriented design of a virtual place value chart and its potential to support this development and understanding. We also present results of a qualitative study with second graders as well as results of a quantitative study with third graders that can guide further research in that area.


Wrong Answer Decimal Number Colour Representation Textbook Analysis Individual Digit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Askew, M. (2012). Transforming primary mathematics. Abingdon: Routledge.Google Scholar
  2. Bartolini Bussi, Maria G. (2011). Artefacts and utilization schemes in mathematics teacher education: place value in early childhood education. J Math Teacher Educ (2011), 14:93–112, DOI 10.1007/s10857-011-9171-2.Google Scholar
  3. Gras, R., Suzuki, F., Guillet, F., & Spagnolo, F. (2008). Statistical implicative analysis. New York: Springer.CrossRefGoogle Scholar
  4. Kortenkamp, U., & Ladel, S. (2014). Flexible use and understanding of place value via traditional and digital tools. Research report. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of PME 38 (Vol. 4, pp. 33–40). Vancouver, Canada: PME.Google Scholar
  5. Ladel, S., & Kortenkamp, U. (2011). Finger-symbol-sets and multi-touch for a better understanding of numbers and operations. In Proceedings of CERME 7. Rzeszów.Google Scholar
  6. Ladel, S., & Kortenkamp, U. (2013). Designing a technology based learning environment for place value using artifact-centric Activity Theory. In A. M. Lindmaier & A. Heinze (Eds.), Proceedings of PME 37 (Vol. 1, pp. 188–192). Kiel, Germany: PME.Google Scholar
  7. Ladel, S., & Kortenkamp, U. (2014). Handlungsorientiert zu einem flexiblen Verständnis von Stellenwerten—ein Ansatz aus Sicht der Artifact-Centric Activity Theory. In: S. Ladel & Chr. Schreiber (Hrsg.), Von Audiopodcast bis Zahlensinn. Band 2 der Reihe Lernen, Lehren und Forschen mit digitalen Medien in der Primarstufe. Münster: WTM.Google Scholar
  8. Resnick, L. B., Bill, V., Lesgold, S., & Leer, M. (1991). Thinking in arithmetic class. In B. Means, C. Chelemer, & M. S. Knapp (Eds.), Teaching advanced skills to at-risk students: Views from research and practice (pp. 27–53). San Francisco: Jossey-Bass.Google Scholar
  9. Ross, S. H. (1989). Parts. Wholes, and place value: A developmental view. The Arithmetic Teacher, 36(6), 47–51.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Universität des SaarlandesSaarbrückenGermany
  2. 2.Universität PotsdamPotsdamGermany

Personalised recommendations