Inference of Hidden Structures in Complex Physical Systems by Multi-scale Clustering

  • Z. NussinovEmail author
  • P. RonhovdeEmail author
  • Dandan HuEmail author
  • S. Chakrabarty
  • Bo Sun
  • Nicholas A. Mauro
  • Kisor K. Sahu
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 225)


We survey the application of a relatively new branch of statistical physics—“community detection ”—to data mining. In particular, we focus on the diagnosis of materials and automated image segmentation. Community detection describes the quest of partitioning a complex system involving many elements into optimally decoupled subsets or communities of such elements. We review a multiresolution variant which is used to ascertain structures at different spatial and temporal scales. Significant patterns are obtained by examining the correlations between different independent solvers. Similar to other combinatorial optimization problems in the NP complexity class, community detection exhibits several phases. Typically, illuminating orders are revealed by choosing parameters that lead to extremal information theory correlations .


Image Segmentation Community Detection Normalize Mutual Information Community Detection Algorithm Binary Metallic Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We have benefited from interactions with numerous colleagues. In particular, we would like to thank S. Achilefu, S. Bloch, R. Darst, S. Fortunato, V. Gudkov, K.F. Kelton, T. Lookman, M.E.J. Newman, S. Nussinov, D.R. Reichman, and P. Sarder for numerous discussions and collaboration on some of the problems reviewed in this work and their outgrowths. We are further grateful to support by the NSF under Grants No. DMR-1106293 and DMR-1411229. ZN is indebted to the hospitality and support of the Feinberg foundation for visiting faculty program at the Weizmann Institute.


  1. 1.
    C.A. Angell, Formation of glasses from liquids and biopolymers. Science 267(5206), 1924–1935 (1995)CrossRefGoogle Scholar
  2. 2.
    W.H. Zachariasen, The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841 (1932)CrossRefGoogle Scholar
  3. 3.
    T. Nakamura, E. Matsubara, M. Sakurai, M. Kasai, A. Inoue, Y. Waseda, Structural study in amorphous Zr-noble metal (Pd, Pt and Au) alloys. J. Non-Cryst. Solids 312–314, 517 (2002)CrossRefGoogle Scholar
  4. 4.
    J. Saida, K. Itoh, S. Sato, M. Imafuku, T. Sanada, A. Inoue, Evaluation of the local environment for nanoscale quasicrystal formation in Zr\(_{80}\)Pt\(_{20}\) glassy alloy using Voronoi analysis. J. Phys. Condens. Matter 21, 375104 (2009)CrossRefGoogle Scholar
  5. 5.
    D.J. Sordelet, R.T. Ott, M.Z. Li, S.Y. Wang, C.Z. Want, M.F. Besser, A.C.Y. Liu, M.J. Kramer, Structure of Zr\(_{x}\) Pt\(_{100-x}\) (\(73 \le x \le 77\)) metallic glasses. Metall. Mater. Trans. A 39A, 1908–1916 (2008)CrossRefGoogle Scholar
  6. 6.
    S.Y. Wang, C.Z. Wang, M.Z. Li, L. Huang, R.T. Ott, M.J. Kramer, D.J. Sordelet, K.M. Ho, Short- and medium-range order in a Zr\(_{73}\)Pt\(_{27}\) glass: experimental and simulation studies. Phys. Rev. B 78, 184204 (2008)CrossRefGoogle Scholar
  7. 7.
    R.L. McGreevy, Understanding liquid structures. J. Phys. Condens. Matter 3, F9 (1991)CrossRefGoogle Scholar
  8. 8.
    D.A. Keen, R.L. McGreevy, Structural modelling of glasses using reverse Monte Carlo simulation. Nature 344, 423–5 (1990)CrossRefGoogle Scholar
  9. 9.
    H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006)CrossRefGoogle Scholar
  10. 10.
    J.L. Finney, Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. Ser. A 319(1539), 479–493 (1970)CrossRefGoogle Scholar
  11. 11.
    J. Dana Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987)Google Scholar
  12. 12.
    P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983)CrossRefGoogle Scholar
  13. 13.
    T.R. Kirkpatrick, D. Thirumalai, P.G. Wolynes, Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989)CrossRefGoogle Scholar
  14. 14.
    V. Lubchenko, P.G. Wolynes, Theory of structural glasses and supercooled liquids. Annu. Rev. Phys. Chem. 58, 235–266 (2007)CrossRefGoogle Scholar
  15. 15.
    G. Tarjus, S.A. Kivelson, Z. Nussinov, P. Viot, The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment. J. Phys. Condens. Matter 17, R1143–R1182 (2005)CrossRefGoogle Scholar
  16. 16.
    Z. Nussinov, Avoided phase transitions and glassy dynamics in geometrically frustrated systems and non-Abelian theories. Phys. Rev. B 69, 014208 (2004)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    S. James, The Wisdom of Crowds (Anchor Books, New York, 2005). ISBN: 0-385-72170-6Google Scholar
  19. 19.
    P. Ronhovde, Z. Nussinov, An improved potts model applied to community detection. Phys. Rev. E 81, 046114 (2010)CrossRefGoogle Scholar
  20. 20.
    P. Ronhovde, Z. Nussinov, Multiresolution community detection for megascale networks by information-based replica correlations. Phys. Rev. E 80, 016109 (2009)CrossRefGoogle Scholar
  21. 21.
    B. Sun, B. Leonard, P. Ronhovde, Z. Nussinov, An interacting replica approach applied to the traveling salesman problem (2014). arXiv:1406.7282.pdf
  22. 22.
    M. Dorigo, T. Sttzle, Ant Colony Optimization (MIT Press, Cambridge, 2004) ISBN: 0-262-04219-3Google Scholar
  23. 23.
    M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, 1996)Google Scholar
  24. 24.
    S. Fortunato, Community detection in graphs. Phys. Rep. 486, 75–174 (2010)CrossRefGoogle Scholar
  25. 25.
    M.E.J. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  26. 26.
    M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)CrossRefGoogle Scholar
  27. 27.
    S. Fortunato, M. Barthelemy, Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007)CrossRefGoogle Scholar
  28. 28.
    A. Lancichinetti, S. Fortunato, Community detection algorithms: a comparative analysis. Phys. Rev. E 80, 056117 (2009)CrossRefGoogle Scholar
  29. 29.
    V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks. J. Stat. Mech. 10, 10008 (2008)CrossRefGoogle Scholar
  30. 30.
    M.E.J. Newman, Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)CrossRefGoogle Scholar
  31. 31.
    V. Gudkov, V. Montelaegre, S. Nussinov, Z. Nussinov, Community detection in complex networks by dynamical simplex evolution. Phys. Rev. E 78, 016113 (2008)CrossRefGoogle Scholar
  32. 32.
    M. Rosvall, C.T. Bergstrom, Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 105, 1118–1123 (2008)CrossRefGoogle Scholar
  33. 33.
    U. Brandes, D. Dellng, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, D. Wagner, On finding graph clusterings with maximum modularity. In Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science (Springer, Berlin, 2007). doi: 10.1007/978-3-540-74839-7 Google Scholar
  34. 34.
    R.K. Darst, D.R. Reichman, P. Ronhovde, Z. Nussinov, An edge density definition of overlapping and weighted graph communities (2013). arXiv:1301.3120
  35. 35.
    M.E.J. Newman, Spectral methods for community detection and graph partitioning. Phys. Rev. E 88, 042822 (2013)CrossRefGoogle Scholar
  36. 36.
    M.E.J. Newman, Community detection and graph partitioning. Europhys. Lett. 103, 28003 (2013)CrossRefGoogle Scholar
  37. 37.
    R.K. Darst, Z. Nussinov, S. Fortunato, Improving the performance of algorithms to find communities in networks. Phys. Rev. E 89, 032809 (2014)CrossRefGoogle Scholar
  38. 38.
    J. Reichardt, S. Bornholdt, Statistical mechanics of community detection. Phys. Rev. E 74, 016110 (2006)CrossRefGoogle Scholar
  39. 39.
    P. Tiago Piexoto, Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models., Phys. Rev. E 89, 012804 (2014)Google Scholar
  40. 40.
    J.M. Kumpula, J. Saramaki, K. Kaski, J. Kertesz, Limited resolution in complex network community detection with Potts model approach. Eur. Phys. J. B 56, 41 (2007)CrossRefGoogle Scholar
  41. 41.
    P. Ronhovde, Z. Nussinov, Local multi resolution order in community detection. J. Stat. Mech. P01001 (2015)Google Scholar
  42. 42.
    L.G.S. Jeub, P. Balachandran, M.A. Porter, P.J. Mucha, M.W. Mahoney, Think locally, act locally: the detection of small, medium-sized, and large communities in large networks (2014). arXiv:1403.3795.pdf
  43. 43.
    M. De Domenico, A. Insolia, Entropic approach to multiscale clustering analysis. Entropy 14, 865 (2012)Google Scholar
  44. 44.
    P. Tiago Piexoto, Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X 4, 011047 (2014)Google Scholar
  45. 45.
    S. Wiseman, M. Blatt, E. Domany, Superparamagnetic clustering of data. Phys. Rev. E 57, 3767 (1998)CrossRefGoogle Scholar
  46. 46.
    A.L.N. Fred, A.K. Jain, Robust data clustering. In 2003 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2 (2003), pp. 128–133Google Scholar
  47. 47.
    M. Meil, Comparing clusterings—an information based distance. J. Multivar. Anal. 98, 873–895 (2007)CrossRefGoogle Scholar
  48. 48.
    L. Danon, A. Diaz-Guilera, J. Duch, A. Arenas, Comparing community structure identification. J. Stat. Mech. Theory Exp. 9, 09008 (2005)Google Scholar
  49. 49.
    G. Bianconi, Statistical mechanics of multiplex networks: entropy and overlap. Phys. Rev. E 87, 062806 (2013)CrossRefGoogle Scholar
  50. 50.
    P. Ronhovde, S. Chakrabarty, M. Sahu, K.F. Kelton, N.A. Mauro, K.K. Sahu, Z. Nussinov, Detecting hidden spatial and spatio-temporal structures in glasses and complex physical systems by multiresolution network clustering. Eur. Phys. J. E 34, 105 (2011)CrossRefGoogle Scholar
  51. 51.
    P. Ronhovde, S. Chakrabarty, M. Sahu, K.K. Sahu, K.F. Kelton, N. Mauro, Z. Nussinov, Detection of hidden structures on all scales in amorphous materials and complex physical systems: basic notions and applications to networks, lattice systems, and glasses. Sci. Rep. 2, 329 (2012)CrossRefGoogle Scholar
  52. 52.
    D. Hu, P. Ronhovde, Z. Nussinov, A replica inference approach to unsupervised multi-scale image segmentation. Phys. Rev. E 85, 016101 (2012)CrossRefGoogle Scholar
  53. 53.
    L.G. Shapiro, G.C. Stockman, Computer Vision (Prentice-Hall, New Jersey, 2001), pp. 279–325. ISBN: 0-13-030796-3Google Scholar
  54. 54.
    J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905Google Scholar
  55. 55.
    L. Wang, H. Cheng, Z. Liu, C. Zhu, A robust elastic net approach for feature learning. J. Vi. Commun. Image Represent. 25, 313 (2014)CrossRefGoogle Scholar
  56. 56.
    A.A. Abin, F. Mahdisoltani, H. Beigy, WISECODE: wise image segmentation based on community detection. Imaging Sci. J. 62, 327 (2014)CrossRefGoogle Scholar
  57. 57.
    H. Dandan, P. Sarder, P. Ronhovde, S. Bloch, S. Achilefu, Z. Nussinov, Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection: a first study. J. Microsc. 253(1), 54–64 (2014)CrossRefGoogle Scholar
  58. 58.
    D. Hu, P. Sarder, P. Ronhovde, S. Bloch, S. Achilefu, Z. Nussinov, Community detection for fluorescent lifetime microscopy image segmentation. In Proceedings of the SPIE 8949, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXI (2014), p. 89491K.
  59. 59.
  60. 60.
  61. 61.
    D. Hu, P. Ronhovde, Z. Nussinov, Phase transitions in random Potts systems and the community detection problem: spin-glass type and dynamic perspectives. Philos. Mag. 92(4), 406–445 (2012). arXiv:1008.2699 (2010)Google Scholar
  62. 62.
    H. Dandan, P. Ronhovde, Z. Nussinov, Stability-to-instability transition in the structure of large-scale networks. Phys. Rev. E 86, 066106 (2012)CrossRefGoogle Scholar
  63. 63.
    P. Ronhovde, H. Dandan, Z. Nussinov, Global disorder transition in the community structure of large-q Potts systems. EPL (Europhys. Lett.) 99(3), 38006 (2012)CrossRefGoogle Scholar
  64. 64.
    O. Melchert, A.K. Hartmann, Information-theoretic approach to ground-state phase transitions for two- and three-dimensional frustrated spin systems. Phys. Rev. E 87, 022107 (2013)CrossRefGoogle Scholar
  65. 65.
    S. Cook, The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual ACM Symposium on Theory of Computing (Association for Computing Mchinery, New York, 1971) pp. 151–158Google Scholar
  66. 66.
    P. Cheeseman , B. Kanefsky, W.M. Taylor, Where the really hard problems are? In Proceedings of 12th International Joint Conference on AI (IJCAI-91) Automated Reasoning vol. 1, ed. by J. Mylopoulos, R. Reiter (1991), p. 331Google Scholar
  67. 67.
    R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, Lidror Troyansky, Nature 400, 133 (1999)CrossRefGoogle Scholar
  68. 68.
    M. Mezard, G. Parisi, R. Zecchina, Analytic and algorithmic solution of random satisfiability problems. Science 297, 812 (2002)CrossRefGoogle Scholar
  69. 69.
    A. Decelle, F. Krzakala, C. Moore, L. Zdeborova, Phase transition in the detection of modules in sparse networks. Phys. Rev. Lett. 107, 065701 (2011). arXiv:1102.1182
  70. 70.
    E. Mossel, J. Neeman, A. Sly, Stochastic block models and reconstruction (2012). arXiv:1202.1499
  71. 71.
    R.R. Nadakuditi,M.E.J. Newman, Graph spectra and the detectability of community structure in networks. Phys. Rev. Lett. 108, 188701 (2012)Google Scholar
  72. 72.
    R.K. Darst, D.R. Reichman, P. Ronhovde, Z. Nussinov, Algorithm independent bounds on community detection problems and associated transitions in stochastic block model graphs. J. Complex Netw. (2014). doi: 10.1093/comnet/cnu042 Google Scholar
  73. 73.
    G. Ver Steeg, C. Moore, A. Galstyan, A. Allahverdyan, Phase transitions in community detection: a solvable toy model. Europhys. Lett. 106, 48004 (2014)Google Scholar
  74. 74.
    A. Montanari, Finding one community in a sparse graph (2015). arXiv:1502.05680 Google Scholar
  75. 75.
    X. Zhang, R.R. Nadakuditi, M.E.J. Newman, Spectra of random graphs with community structure and arbitrary degrees. Phys. Rev. E 89, 042816 (2014)Google Scholar
  76. 76.
    J. Reichardt, M. Leone, (Un)detectable cluster structure in sparse networks. Phys. Rev. Lett. 101, 78701 (2008)CrossRefGoogle Scholar
  77. 77.
    S. Kirkpatrick, C.D. Gelatt Jr, M.P. Vecchi, Optimization by simulated annealing. Science 220, 671 (1983)Google Scholar
  78. 78.
    J. Villain, R. Bidaux, J.P. Carton, R. Conte, Order as an effect of disorder. J. Physique 41, 1263 (1980)CrossRefGoogle Scholar
  79. 79.
    C.L. Henley, Ordering due to disorder in a frustrated vector antiferromagnet. Phys. Rev. Lett. 62, 2056 (1989)CrossRefGoogle Scholar
  80. 80.
    Z. Nussinov, M. Biskup, L. Chayes, J. van den Brink, Orbital order in classical models of transition-metal compounds. Europhys. Lett. 67, 990 (2004)CrossRefGoogle Scholar
  81. 81.
    P.G. Wolynes, Folding funnels and energy landscapes of larger proteins within the capillarity approximation. Proc. Natl. Acad. Sci. USA 94(12), 6170–6175 (1997)CrossRefGoogle Scholar
  82. 82.
    D.S. Bassett, E.T. Owens, K.E. Daniels, M.A. Porter, Influence of network topology on sound propagation in granular materials. Phys. Rev. E 86, 041306 (2012)CrossRefGoogle Scholar
  83. 83.
    F. Cerina, V. De Leo, M. Barthelemy, A. Chessa, Spatial correlations in attribute communities. PLoS ONE 7(5), e37507 (2012)CrossRefGoogle Scholar
  84. 84.
    P. Holme, J. Saramaki, Temporal networks. Phys. Rep. 519, 97 (2012)CrossRefGoogle Scholar
  85. 85.
    A. Cardillo, J. Gmez-Gardenes, M. Zanin, M. Romance, D. Papo, F. del Pozo, S. Boccaletti, Emergence of network features from multiplexity. Sci. Rep. 3, 1344 (2013)CrossRefGoogle Scholar
  86. 86.
    G. Petri, P. Expert, Temporal stability of network partitions. Phys. Rev. E 90, 022813 (2014)CrossRefGoogle Scholar
  87. 87.
    R.L. Jack, A.J. Dunleavy, C. Patrick Royall, Information-theoretic measurements of coupling between structure and dynamics in glass formers. Phys. Rev. Lett. 113, 095703 (2014)Google Scholar
  88. 88.
    J.-P. Bouchaud, G. Biroli, On the Adams-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347 (2004)CrossRefGoogle Scholar
  89. 89.
    M. Mosayebi, E.D. Gado, P. Iig, H.C. Ottinger, Probing a critical length at the glass transition. Phys. Rev. Lett. 104, 205704 (2010)CrossRefGoogle Scholar
  90. 90.
    L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El Masri, D. L’Hote, F. Ladieu, M. Pierno, Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797 (2005)CrossRefGoogle Scholar
  91. 91.
    S. Karmakar, C. Dasgupta, S. Sastry, Growing length and time scales in glass-forming liquids. Proc. Natl. Acad. Sci. USA 106, 3675 (2010)CrossRefGoogle Scholar
  92. 92.
    J. Kurchan, D. Levine, Correlation length for amorphous systems (2009). arXiv:0904.4850
  93. 93.
    C. Dasgupta, A.V. Indrani, S. Ramaswamy, M.K. Phani, Is there a growing correlation length near the glass transition? Europhys Lett. 15, 307 (1991)CrossRefGoogle Scholar
  94. 94.
    A. Montanari, G. Semerjian, Rigorous inequalities between length and time scales in glassy systems. J. Stat. Phys. 125, 23–54 (2006)CrossRefGoogle Scholar
  95. 95.
    W. Kob, H.C. Andersen, Testing made-coupling theory for a supercooled binary Lennard-Jones mixture: the van Hove correlation function. Phys. Rev. E 51, 4626 (1995)CrossRefGoogle Scholar
  96. 96.
    R. Soklaski, Z. Nussinov, Z. Markow, K.F. Kelton, L. Yang, Connectivity of icosahedral network and a dramatically growing static length scale in Cu-Zr binary metallic glasses. Phys. Rev. B 87, 184203 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Washington University in St. LouisSt. LouisUSA
  2. 2.Department of Condensed Matter PhysicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.Findlay UniversityFindlayUSA
  4. 4.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  5. 5.North Central CollegeNapervilleUSA
  6. 6.School of Minerals, Metallurgical and Materials EngineeringIndian Institute of TechnologyBhubaneswarIndia

Personalised recommendations