Advertisement

Combinatorial Materials Science, and a Perspective on Challenges in Data Acquisition, Analysis and Presentation

  • Robert C. PullarEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 225)

Abstract

Combinatorial Materials Science is the rapid synthesis and analysis of large numbers of compositions in parallel, created through many combinations of a relatively small number of starting materials. It is, therefore, essential that for a truly combinatorial approach both synthesis and measurement must be high-throughput, to handle the large number of samples required. Since the first serious attempts at combinatorial searches in Materials Science in the mid 1990s, the technique is still very much in its infancy, falling way behind the progress made in biomedical and organic combinatorial chemistry, despite attracting increasing interest from industry. The most investigated materials by combinatorial methods are catalysts and phosphors, and most work has been on libraries in deposited thin film form. This chapter will give a broad overview of the different synthetic strategies used, with a particular look at the difficulties of producing thick film or bulk ceramic/metal-oxide libraries. A vast number of characteristics can be quantified in combinatorial materials libraries, from compositional, crystal phase, structural and microstructural information, to functional properties including catalytic/photocatalytic, optical/luminescent, electrical/dielectric, piezoelectric/ferroelectric, magnetic, oxygen-conducting, water-splitting, mechanical, thermal/thermoelectric, magnetoelectric/optoelectric/magneto-optic/multiferroic, bioactive/biocompatible, etc. This chapter will cover the range of high-throughput measurements open in combinatorial Materials Science, and especially the challenges in presenting and displaying the large and complex amount of data obtained for functional materials libraries. To this end, the use of glyphs is looked at, glyphs being data points that also contain extra levels of information/data in graphic form.

Keywords

Pulse Laser Deposition Combinatorial Library Combinatorial Material Magnetic Force Microscopy Piezoresponse Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author would firstly like to thank the FCT (Fundação para a Ciência e a Tecnologia in Portugal), and the FCT Ciência 2008 program and grant SFRH/BPD/97115/2013 are acknowledged for funding the author during the writing and publication of this chapter. The author would also like to thank the publishers and copy write holders of all figures from previous sources used in this chapter, which have been referenced in the relevant figure caption.

References

  1. 1.
    R.B. Merrifield, Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2153 (1963)CrossRefGoogle Scholar
  2. 2.
    K. Kenedy, T. Stefansky, G. Davy, V.F. Zacky, E.R. Parker, Rapid mapping for determining ternary-alloy phase diagrams. J. Appl. Phys. 36, 10–3808 (1965)Google Scholar
  3. 3.
    J.J. Hanak, The multiple sample concept in materials research; synthesis, compositional analysis and testing of entire multi-component systems. J. Mater. Sci. 5, 964–971 (1970)CrossRefGoogle Scholar
  4. 4.
    S.R. Hall, M.T.R. Harrison, The search for new superconductors. Chem. Br. 30, 739–742 (1994)Google Scholar
  5. 5.
    X.-D. Xiang, X. Sun, G. Briceno, Y. Lou, K.-A. Wang, H. Chang, W.G. Wallace-Freedman, S.-W. Chen, P.G. Schultz, A combinatorial approach to materials discovery. Science 268, 1738–1740 (1995)CrossRefGoogle Scholar
  6. 6.
    Proceedings of the first Japan-US Workshop on Combinatorial Materials Science and Technology. Appl. Surf. Sci. 189, 175–371 (2002)Google Scholar
  7. 7.
    Proceedings of the Second Japan-US Workshop on Combinatorial Materials Science and Technology. Appl. Surf. Sci. 223, 1–267 (2004)Google Scholar
  8. 8.
    H. Koinuma, I. Tekeuchi, Combinatorial solid-state chemistry of inorganic materials. Nat. Mater. 3, 429–438 (2004)CrossRefGoogle Scholar
  9. 9.
    R.A. Potyrailo, I. Takeuchi, Role of high throughput characterization tools in combinatorial materials science. Meas. Sci. Tech. 16, 1–4 (2005)CrossRefGoogle Scholar
  10. 10.
    J.-C. Zhao, Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure relationships. Prog. Mater. Sci. 51, 557–631 (2006)CrossRefGoogle Scholar
  11. 11.
    J. Ouellette, Combinatorial materials synthesis. Ind. Phys. 4, 24–27 (1998)Google Scholar
  12. 12.
    E.W. McFarland, W.H. Weinberg, Combinatorial approaches to materials discovery. Trends Biotechnol. 17, 107–115 (1999)CrossRefGoogle Scholar
  13. 13.
    Y. Matsumoto, M. Murakami, Z. Jin, A. Ohtomo, M. Lippmaa, M. Kawasaki, H. Koinuma, Combinatorial laser molecular beam epitaxy (MBE) growth of Mg–Zn–O alloy for band gap engineering. Jpn. J. Appl. Phys. 38, L603–L606 (1999)CrossRefGoogle Scholar
  14. 14.
    R.B. van Dover, L.F. Schneemeyer, R.M. Fleming, Discovery of a useful thin film dielectric using a compositional-spread approach. Nature 392, 24–27 (1998)CrossRefGoogle Scholar
  15. 15.
    K.W. Kim, M.K. Jeon, K.S. Oh, T.S. Kim, Y.S. Kim, S.I. Woo, Combinatorial approach for ferroelectric material libraries prepared by liquid source misted chemical deposition method. Proc. Natl. Acad. Sci. USA 104, 1134–9 (2007)CrossRefGoogle Scholar
  16. 16.
    T. Fukumura, M. Ohtani, M. Kawasaki, Y. Okimoto, T. Kageyama, T. Koida, T. Hasegawa, Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach. Appl. Phys. Lett. 77, 3426–3428 (2000); T. Fukumura, M. Kawasaki, Z. Jin, H. Kimura, Y. Yamada, M. Haemori, Y. Matsumoto, K. Inaba, M. Murakami, R. Takahashi, T. Hasegawa, H. Koinuma, Combinatorial search for transparent oxide diluted magnetic semiconductors, in Proceedings of the Materials Research Society, vol. 700 (2001) S2.6Google Scholar
  17. 17.
    A. Kafizas, G. Hyett, I.P. Parkin, Combinatorial atmospheric pressure chemical vapour deposition (cAPCVD) of a mixed vanadium oxide and vanadium oxynitride thin film. J. Mater. Chem. 19, 1399–1408 (2009)CrossRefGoogle Scholar
  18. 18.
    R. Takahashi, H. Kubota, M. Murakami, Y. Yamamoto, Y. Matsumoto, H. Koinuma, Design of combinatorial shadow masks for complete ternary-phase diagramming of solid state materials. J. Comb. Chem. 6, 50–53 (2004)CrossRefGoogle Scholar
  19. 19.
    R. Wendelbo, D.E. Akporiakye, A. Karlsson, M. Plassen, A. Olafsen, Combinatorial hydrothermal synthesis and characterisation of perovskites. J. Eur. Ceram. Soc. 26, 849–859 (2006)CrossRefGoogle Scholar
  20. 20.
    J.R.G. Evans, M.J. Edirisinghe, P.V. Coveney, J. Eames, Combinatorial searches of inorganic materials using the ink-jet printer; science, philosophy and technology. J. Eur. Ceram. Soc. 21, 2291–2299 (2001)CrossRefGoogle Scholar
  21. 21.
    C.J. Vess, J. Gilmore, N. Kohrt, P.J. McGinn, Combinatorial synthesis of oxide powders with an autopipetting system. J. Comb. Chem. 6, 86–90 (2004)CrossRefGoogle Scholar
  22. 22.
    S. Yang, J.R.G. Evans, Device for preparing combinatorial libraries in powder metallurgy. J. Comb. Chem. 6, 549–555 (2004)CrossRefGoogle Scholar
  23. 23.
    J. Ding, J. Bao, S. Sun, Z. Luo, C. Gao, Combinatorial discovery of visible-light driven photocatalysts based on the ABO\(_{3}\)-type (A) Y, La, Nd, Sm, Eu, Gd, Dy, Yb, B) Al and In) binary oxides. J. Comb. Chem. 11, 523–526 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Cabañas, J.A. Darr, E. Lester, M. Poliakoff, Continuous hydrothermal synthesis of inorganic materials in a near-critical water flow reactor; the one-step synthesis of nano-particulate Ce\(_{1-\text{ x }}\)Zr\(_{\text{ x }}\)O\(_{2}\) (x=0-1) solid solutions. J. Mater. Chem. 11, 561–568 (2001)CrossRefGoogle Scholar
  25. 25.
    R. Wendelbo, D.E. Akporiakye, A. Karlsson, M. Plassen, A. Olafsen, Combinatorial hydrothermal synthesis and characterisation of perovskites. J. Eur. Ceram. Soc. 26, 849–859 (2006)CrossRefGoogle Scholar
  26. 26.
    I. Yanase, T. Ohtaki, M. Watanabe, Combinatorial study on nano-particle mixture prepared by robot system. Appl. Surf. Sci. 189, 292–299 (2002)CrossRefGoogle Scholar
  27. 27.
    T.A. Stegk, R. Janssen, G.A. Schneider, High-throughput synthesis and characterization of bulk ceramics from dry powders. J. Comb. Chem. 10, 274–279 (2008)CrossRefGoogle Scholar
  28. 28.
    Y. Zhan, L. Chen, S. Yang, J.R.G. Evans, Thick film ceramic combinatorial libraries: the substrate problem. QSAR Comb. Sci. 26, 1036–1045 (2007)CrossRefGoogle Scholar
  29. 29.
    M.M. Mohebi, J.R.G. Evans, A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics. J. Comb. Chem. 4, 267–274 (2002)CrossRefGoogle Scholar
  30. 30.
    Z.-L. Luo, B. Geng, J. Bao, C. Gao, Parallel solution combustion synthesis for combinatorial materials studies. J. Comb. Chem. 7, 942–946 (2005)CrossRefGoogle Scholar
  31. 31.
    T.-S. Chan, C.-C. Kang, R.-S. Liu, L. Chen, X.-N. Liu, J.-J. Ding, J. Bao, C. Gao, Combinatorial study of the optimization of Y\(_{2}\)O\(_{3}\):Bi. Eu Red Phosphors. J. Comb. Chem. 9, 343–346 (2007)CrossRefGoogle Scholar
  32. 32.
    T.-S. Chan, Y.-M. Liu, R.-S. Liu, Combinatorial search for green and blue phosphors of high thermal stabilities under UV excitation based on the K(Sr\(_{1-x-y})\)PO\(_{4}\):Tb\(^{3+}\) \(_{x}\)Eu\(^{2+}\) \(_{y}\) system. J. Comb. Chem. 10, 847–850 (2008)CrossRefGoogle Scholar
  33. 33.
    J. Wang, J.R.G. Evans, London University Search Instrument: a combinatorial robot for high-throughput methods in ceramic science. J. Comb. Chem. 7, 665–672 (2005)Google Scholar
  34. 34.
    R.C. Pullar, Y. Zhang, L. Chen, S. Yang, J.R.G. Evans, N. McN, Alford, manufacture and measurement of combinatorial libraries of dielectric ceramics, part I: physical characterisation of Ba\(_{1-{\text{ x }}}\)Sr\(_{\text{ x }}\)TiO\(_{3}\) libraries. J. Eur. Ceram. Soc. 27, 3861–3865 (2007)CrossRefGoogle Scholar
  35. 35.
    R.C. Pullar, Y. Zhang, L. Chen, S. Yang, J.R.G. Evans, P.Kr. Petrov, A.N. Salak, D.A. Kiselev, A.L. Kholkin, V.M. Ferreira, N.McN. Alford, Manufacture and measurement of combinatorial libraries of dielectric ceramics, part II: dielectric measurements of Ba\(_{1-x}\) libraries. J. Eur. Ceram. Soc. 27, 4437–4443 (2007)Google Scholar
  36. 36.
    R.C. Pullar, Y. Zhang, L. Chen, S. Yang, J.R.G. Evans, A.N. Salak, D.A. Kiselev, A.L. Kholkin, V.M. Ferreira, N. McN, Alford, dielectric measurements on a novel Ba\(_{1-x}\) (BCT) bulk ceramic combinatorial library. J. Electroceram. 22, 245–251 (2009)Google Scholar
  37. 37.
    J.C.H. Rossiny, S. Fearn, J.A. Kilner, Y. Zhang, L. Chen, Combinatorial searching for novel mixed conductors. Solid State Ion. 177, 1789–1794 (2006)CrossRefGoogle Scholar
  38. 38.
    B. Wessler, V. Jehanno, W. Rossner, W.F. Maier, Combinatorial synthesis of thin film libraries for microwave dielectrics. Appl. Surf. Sci. 223, 30–34 (2004)CrossRefGoogle Scholar
  39. 39.
    M.L. Green, P.K. Schenck, K.-S. Chang, J. Ruglovsky, M. Vaudin, Higher-\(\kappa \) dielectrics for advanced silicon microelectronic devices: a combinatorial research study. Microelectron. Eng. 86, 1662–1664 (2009)CrossRefGoogle Scholar
  40. 40.
    R.-P. Herber, C. Schröter, B. Wessler, G.A. Schneider, High throughput screening of piezoelectric response of ferroelectric thin films with automated scanning probe microscopy. Thin Solid Films 516, 8609–8682 (2008)CrossRefGoogle Scholar
  41. 41.
    J.L. Jones, A. Pramanick, J.E. Daniels, High-throughput evaluation of domain switching in piezoelectric ceramics and application to PbZ\(_{r0.6}\) doped with La and Fe. Appl. Phys. Lett. 93, (152904) (2008)Google Scholar
  42. 42.
    T. Chikyow, P. Ahmet, K Nakajima, T. Koida, M. Takakura, M. Yoshimoto, H. Koinuma, A combinatorial approach in oxide/semiconductor interface research for future electronic devices. Appl. Surf. Sci. 189, 284-291 (2002)Google Scholar
  43. 43.
    S. Guerin, B.E. Hayden, D. Pletcher, M.E. Rendall, J.-P. Suchsland, L.J. Williams, Combinatorial approach to the study of particle size effects in electrocatalysis: synthesis of supported Gold nanoparticles. J. Comb. Chem. 8, 791–798 (2006)CrossRefGoogle Scholar
  44. 44.
    P. Cong, A. Dehestani, R. Doolen, D.M. Giaquinta, S. Guan, V. Markov, D. Poojary, K. Self, H. Turner, W.H. Weinberg, Combinatorial discovery of oxidative dehydrogenation catalysts within the Mo-V-Nb-O system. Proc. Natl. Acad. Sci. USA 96, 11077–11080 (1999)CrossRefGoogle Scholar
  45. 45.
    S.J. Henderson, A.L. Hector, M.T. Weller, High throughput synthesis of pigments by solution deposition. Mater. Res. Soc. Symp. Proc. 848(FF3.17), 151-156 (2005)Google Scholar
  46. 46.
    J. Scheidtmann, A. Frantzen, G. Frenzer, W.F. Maier, A combinatorial technique for the search of solid state gas sensor materials. Meas. Sci. Tech. 16, 119–127 (2005)CrossRefGoogle Scholar
  47. 47.
    K. Takada, K. Fujimoto, T. Sasaki, M. Watanabe, Combinatorial electrode array for high-throughput evaluation of combinatorial library for electrode materials. Appl. Surf. Sci. 223, 210–213 (2004)CrossRefGoogle Scholar
  48. 48.
    C.H. Olk, Infrared screening of combinatorially prepared hydrogen sorbing metal alloys. Mater. Res. Soc. Symp. Proc. 801, 75–88 (2003)CrossRefGoogle Scholar
  49. 49.
    Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–6 (2001)CrossRefGoogle Scholar
  50. 50.
    R.B. van Dover, L.F. Schneemeyer, R.M. Fleming, Discovery of a useful thin film dielectric using a combinatorial-spread approach. Nature 392, 162–164 (1998)CrossRefGoogle Scholar
  51. 51.
    H. Chang, I. Takeuchi, X.-D. Xiang, A low loss composition region identified from a thin film composition spread of (Ba\(_{\text{1-x-y }}\)Sr\(_{\text{ x }}\)Ca\(_{\text{ y }})\)TiO\(_{3}\). Appl. Phys. Lett. 74, 1165–1167 (1999)CrossRefGoogle Scholar
  52. 52.
    G. Briceño, H. Chang, X. Sun, P.G. Schultz, X.-D. Xiang, A class of Cobalt Oxide magnetoresistance materials discovered with combinatorial synthesis. Science 270, 273–275 (1995)CrossRefGoogle Scholar
  53. 53.
    R.C. Pullar, Combinatorial bulk ceramic magnetoelectric composite libraries of strontium hexaferrite and barium titanate. ACS Comb. Sci. 14, 425–433 (2012)CrossRefGoogle Scholar
  54. 54.
    C. Gao, B. Hu, I. Takeuchi, K.-S. Chang, X.-D. Xiang, G. Wang, Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries. Meas. Sci. Technol. 16, 248–260 (2005)CrossRefGoogle Scholar
  55. 55.
    U. Simon, D. Sanders, J. Jockel, C. Hepel, T. Brinz, Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on Novel gas sensor materials. J. Comb. Chem. 4, 511–515 (2002)CrossRefGoogle Scholar
  56. 56.
    I. Takeuchi, W. Yang, K.-S. Chang, M. Aronova, R.D. Vispute, T. Venkatesan, L.A. Bendersky, Monolithic multi-channel UV detector arrays and continuous phase evolution in Mg\(_{\text{ x }}\)Zn\(_{\text{1-x }}\)O composition spreads. J. Appl. Phys. 94, 7336–7340 (2003)CrossRefGoogle Scholar
  57. 57.
    Y.K. Yoo, F. Duewer, H. Yang, D. Yi, J.-W. Li, X.-D. Xiang, Room-temperature electronic phase transitions in the continuous phase diagrams of perovskite manganites. Nature 406, 704–708 (2000)CrossRefGoogle Scholar
  58. 58.
    P.-A.W. Weiss, C. Thome, W.F. Maier, MS-express: data-extracting and -processing software for high-throughput experimentation with mass spectrometry. J. Comb. Chem. 6, 520-529 (2004)Google Scholar
  59. 59.
    J. Klein, S.A. Schunk, IR-SensographyTM—expanding the scope of contact-free sensing methods. Meas. Sci. Tech. 16, 221–228 (2005)CrossRefGoogle Scholar
  60. 60.
    U. Simon, D. Sanders, J. Jockel, T. Brinz, Setup for high-throughput impedance screening of gas-sensing materials. J. Comb. Chem. 7, 682–687 (2005)CrossRefGoogle Scholar
  61. 61.
    Combinatorial and artificial intelligence methods in materials science, in MRS Proceedings Volume 700 (2001), http://www.mrs.org/publications/epubs/proceedings/fall2001/s/
  62. 62.
    M.Z. Pesenson, S.K. Suram, J.M. Gregoire, Statistical analysis and interpolation of compositional data in materials science. ACS Comb. Sci. 17, 130–136 (2015)CrossRefGoogle Scholar
  63. 63.
    A.G. Kusne, T. Gao, A. Mehta, L. Ke, M.C. Nguyen, K.-M. Ho, V. Antropov, C.-Z. Wang, M.J. Kramer, C. Long, I. Takeuchi, On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci. Rep. 4, 6367 (2014)Google Scholar
  64. 64.
    G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad, Accelerating materials property predictions using machine learning. Sci. Rep. 3, 2810 (2013)CrossRefGoogle Scholar
  65. 65.
    A. Yosipof, O.E. Nahum, A.Y. Anderson, H.-N. Barad, A. Zaban, H. Senderowitz, Data Mining and Machine Learning Tools for Combinatorial Material Science of All-Oxide Photovoltaic Cells. Mol. Inf. (2015). doi: 10.1002/minf.201400174
  66. 66.
    R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, H. Lam, Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb. Sci. 13, 579–633 (2011)CrossRefGoogle Scholar
  67. 67.
    K. Rajan, Materials informatics. Mater. Today 8(10), 38–45 (2005)CrossRefGoogle Scholar
  68. 68.
    C.J. Long, D. Bunker, X. Li, V.L. Karen, I. Takeuchi, Rapid identification of structural phases in combinatorial thin-film libraries using x-ray diffraction and non-negative matrix factorization. Rev. Sci. Instrum. 80, 103902 (2009)CrossRefGoogle Scholar
  69. 69.
    D. Kan, R. Suchoski, S. Fujino, I. Takeuchi, Combinatorial investigation of structural and ferroelectric properties of A- and B-site Co-doped BiFeO3 thin films. Integr. Ferroelectr. 111, 116–124 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departamento de Engenharia de Materiais e Cerâmica/CICECO - Aveiro Institute of MaterialsUniversidade de Aveiro, Campus Universitário de SantiagoAveiroPortugal

Personalised recommendations