Advertisement

Layout Synthesis for Symmetrical Facades

Constraint-Based Support for Architects Decision-Making
  • Andrés Felipe Barco
  • Elise Vareilles
  • Michel Aldanondo
  • Paul Gaborit
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 458)

Abstract

Facade-layout synthesis problem deals with the allocation of an undetermined number of rectangular parameterizable panels over a rectangular facade surface. Requirements state that panels must not overlap, must be placed in specific supporting areas and must cover existing windows and doors over the facade. Due to the constrained constitution of the problem, constraint satisfaction and constraint programming come naturally as solving techniques. However, as most constraint programming environments use as arguments a well-defined set of variables, speculation about the number of panels to be allocated becomes a critical issue for its automation. On this regard, we present a two-phase solution : First determine the structure of the layout-plan and second, pass to a constraint solver a fully declarative model using such structure. We show that our solutions are consistent over symmetrical facades, and thus, can be used for early stages of architectural design. Our goal is to assist architects with a constraint-based support system.

Keywords

Layout Synthesis Constraint satisfaction problems Architects decision-making Decision support systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barco, A.F., Vareilles, E., Aldanondo, M., Gaborit, P.: Calpinator: A configuration tool for building facades. In: 16th International Configuration Workshop, pp. 47–54. CEUR Workshop Proceedings (2014)Google Scholar
  2. 2.
    Barco, A.F., Vareilles, E., Aldanondo, M., Gaborit, P.: A recursive algorithm for building renovation in smart cities. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS, vol. 8502, pp. 144–153. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Barták, R.: Dynamic global constraints in backtracking based environments. Annals of Operations Research 118(1-4), 101–119 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baykan, C., Fox, M.: Spatial synthesis by disjunctive constraint satisfaction. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing 11(04), 245–262 (1997)CrossRefGoogle Scholar
  5. 5.
    Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geometrical constraint kernel in space and time for handling polymorphic k-dimensional objects. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180–194. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Center, T.E.C.: Energy Conservation Handbook. The Energy Conservation Center, Japan (2011)Google Scholar
  7. 7.
    Cooper, M., De Givry, S., Sanchez, M., Schiex, T., Zytnicki, M.: Virtual arc consistency for weighted csp. In: Proceedings of the 23rd National Conference on Artificial Intelligence, AAAI 2008, vol. 1, pp. 253–258. AAAI Press (2008)Google Scholar
  8. 8.
    Council, U.G.B.: New Construction Reference Guide (2013)Google Scholar
  9. 9.
    Falcon, M., Fontanili, F.: Process modelling of industrialized thermal renovation of apartment buildings. eWork and eBusiness in Architecture, Engineering and Construction, pp. 363–368 (2010)Google Scholar
  10. 10.
    Faltings, B., Macho-Gonzalez, S.: Open constraint programming. Artificial Intelligence 161(1-2), 181–208 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Imahori, S., Yagiura, M., Nagamochi, H.: Practical algorithms for two-dimensional packing. In: Handbook of Approximation Algorithms and Metaheuristics, ch. 36. Chapman & Hall/Crc Computer & Information Science Series (2007)Google Scholar
  12. 12.
    Jelle, B.: Traditional, state-of-the-art and future thermal building insulation materials and solutions - properties, requirements and possibilities. Energy and Buildings 43(10), 2549–2563 (2011)CrossRefGoogle Scholar
  13. 13.
    Juan, Y., Gao, P., Wang, J.: A hybrid decision support system for sustainable office building renovation and energy performance improvement. Energy and Buildings 42(3), 290–297 (2010)CrossRefGoogle Scholar
  14. 14.
    Liggett, R.: Automated facilities layout: past, present and future. Automation in Construction 9(2), 197–215 (2000)CrossRefGoogle Scholar
  15. 15.
    Montanari, U.: Networks of constraints: Fundamental properties and applications to picture processing. Information Sciences 7, 95–132 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Olarte, C., Rueda, C., Valencia, F.: Models and emerging trends of concurrent constraint programming. Constraints 18(4), 535–578 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy and Buildings 40(3), 394–398 (2008)CrossRefGoogle Scholar
  18. 18.
    Prud’homme, C., Fages, J.: An introduction to Choco 3.0, An open source java constraint programming library. In: CP Solvers: Modeling, Applications, Integration, and Standardization. International Workshop, Uppsala Sweden (2013)Google Scholar
  19. 19.
    Schiex, T.: Possibilistic constraint satisfaction problems or “How to handle soft constraints?”. In: Proceedings of the Eighth International Conference on Uncertainty in Artificial Intelligence, UAI 1992, pp. 268–275. Morgan Kaufmann Publishers Inc., San Francisco (1992)Google Scholar
  20. 20.
    Schulte, C., Carlsson, M.: Finite Domain Constraint Programming Systems. In: Handbook of Constraint Programming (Foundations of Artificial Intelligence), ch. 14 . Elsevier Science Inc., New York (2006)Google Scholar
  21. 21.
    van Hoeve, W.-J., Régin, J.-C.: Open constraints in a closed world. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 244–257. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Vareilles, E., Barco Santa, A., Falcon, M., Aldanondo, M., Gaborit, P.: Configuration of high performance apartment buildings renovation: A constraint based approach. In: 2013 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 684–688 (December 2013)Google Scholar
  23. 23.
    Zawidzki, M., Tateyama, K., Nishikawa, I.: The constraints satisfaction problem approach in the design of an architectural functional layout. Engineering Optimization 43(9), 943–966 (2011)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Andrés Felipe Barco
    • 1
  • Elise Vareilles
    • 1
  • Michel Aldanondo
    • 1
  • Paul Gaborit
    • 1
  1. 1.Université de Toulouse, Mines d’AlbiAlbi Cedex 09France

Personalised recommendations