Advertisement

Aspect and Sentiment Unification Model for Twitter Analysis

  • Hui Zhang
  • Tong-xin Wang
  • Yi-qun Liu
  • Shao-ping Ma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9243)

Abstract

With the special “@, #, //” symbols, which include a lot of emotional symbols and pictures etc., tweets are different with other user-generated general texts, such as blogs, forums, reviews. Considering structural features and content of tweets, we present a semi-supervised Aspect and Sentiment Unification Model(PL-SASU). Using more information rather than solo texts, this model can model tweets better. The experiments of sentiment classification and aspect identification on real twitter data show that PL-SASU outperforms JTS, ASUM and UTSU model.

Keywords

Tweet Sentiment classification Aspect identification Aspect and sentiment unification model Emotional symbol 

Notes

Acknowledgments

This work was supported by National Key Basic Research Program (2015CB358700) and Natural Science Foundation (61472206, 61073071) of China.

References

  1. 1.
    Jmal, J., Faiz, R.: Customer review summarization approach using Twitter and SentiWordNet. In: Proceedings of the 3rd International Conference on Web Intelligence, Mining and Semantics. ACM (2013)Google Scholar
  2. 2.
    Abel, F., et al.: Twitcident: fighting fire with information from social web streams. In: Proceedings of the 21st International Conference Companion on World Wide Web. ACM (2012)Google Scholar
  3. 3.
    Signorini, A., Segre, A.M., Polgreen, P.M.: The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic. PLoS One 6(5), e19467 (2011)CrossRefGoogle Scholar
  4. 4.
    Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)CrossRefGoogle Scholar
  5. 5.
    Triantafyllidis, A.K., et al.: A pervasive health system integrating patient monitoring, status logging, and social sharing. IEEE J Biomed. Health Inform. 17(1), 30–37 (2013)CrossRefGoogle Scholar
  6. 6.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  7. 7.
    He, Y.: Latent sentiment model for weakly-supervised cross-lingual sentiment classification. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 214–225. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Lin, C., He, Y.: Joint sentiment/topic model for sentiment analysis. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management. ACM (2009)Google Scholar
  9. 9.
    Jo, Y., Oh, A.H.: Aspect and sentiment unification model for online review analysis. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. ACM (2011)Google Scholar
  10. 10.
    Sun, Y., Zhou, X.G., Fu, W.: Unsupervised text sentiment analysis based on Topic-Sentiment mixed model. Acta Scientiarum Naturalium Universitatis Pekinensis 1, 017 (2013)Google Scholar
  11. 11.
    Li, F., Huang, M., Zhu, X.: Sentiment analysis with global topics and local dependency. In: AAAI (2010)Google Scholar
  12. 12.
    Liu, K.L., Li, W.J., Guo, M.: Emoticon smoothed language models for twitter sentiment analysis. In: AAAI (2012)Google Scholar
  13. 13.
    Quercia, D., Capra, L., Crowcroft, J.: The social world of twitter: topics, geography, and emotions. In: ICWSM (2012)Google Scholar
  14. 14.
    Zhao, J., et al. Moodlens: an emoticon-based sentiment analysis system for chinese tweets. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2012)Google Scholar
  15. 15.
    Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: conversational aspects of retweeting on twitter. In: 2010 43rd Hawaii International Conference on System Sciences (HICSS). IEEE (2010)Google Scholar
  16. 16.
    Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event identification on twitter. ICWSM 11, 438–441 (2011)Google Scholar
  17. 17.
    Wang, Y., Agichtein, E., Benzi, M.: Tm-lda: efficient online modeling of latent topic transitions in social media. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2012)Google Scholar
  18. 18.
    Linhong, X., Hongfei, L., Pan, Yu., Hui, R., Hianmei, C.: Constructing the affective lexicon ontology. J. China Soc. Sci. Tech. Inf. 27(2), 180–185 (2008)Google Scholar
  19. 19.
    Newman, D., et al.: Distributed inference for latent dirichlet allocation. In: Advances in Neural Information Processing Systems (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hui Zhang
    • 1
    • 2
  • Tong-xin Wang
    • 3
  • Yi-qun Liu
    • 1
  • Shao-ping Ma
    • 1
  1. 1.State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory of Information Science and Technology, Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  2. 2.Operation Experiment CenterNanjing Army Command CollegeNanjingChina
  3. 3.Department of PhysicsFudan UniversityShanghaiChina

Personalised recommendations