Piezoelectric Motor Technology: A Review

  • Amro Shafik
  • Ridha Ben Mrad


Piezoelectric actuators are increasingly used in various nanopositioning applications and emerging applications where miniaturization is important. This is due to their unique characteristics including their very high accuracy and short response time as compared to electromagnetic based motors and actuators and higher output force compared to electrostatic actuators. Piezoelectric motors use actuators that take advantage of the converse piezoelectric effect. In this chapter, these motors are classified into quasistatic and ultrasonic motors (USMs) based on their working frequency. Several designs from the literature and commercial suppliers are reviewed and their characteristics are presented. Two examples of piezoelectric motors are discussed in detail. These include a piezoworm stage and a USM with segmented electrodes. Future development of these technologies is also briefly discussed addressing issues such as increasing the output power, the efficiency, and further miniaturization of these devices.


Piezoelectric actuators Ultrasonic motors Piezoelectric motors Traveling wave motors Standing wave motors 


  1. 1.
    Y. Okazaki, Precision positioning control apparatus and precision positioning control method. U.S. Patent 5,801,939, 1998Google Scholar
  2. 2.
    W. Yao, M. Tomizuka, Robust controller design for a dual-stage positioning system, in Proceedings of International Conference on Industrial Electronics, Control, and Instrumentation, vol. 1, 1993, pp. 62–66Google Scholar
  3. 3.
    K. Tsai, J. Yen, Servo system design of a high-resolution piezo-driven fine stage for step-and repeat microlithography systems, in Proceedings of Annual Conference of Industrial Electronics Society, vol. 1, 1999, pp. 11–16Google Scholar
  4. 4.
    S. Kwon, W. Chang, Y. Youm, Robust and time-optimal control strategy for coarse/fine dual-stage manipulators, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, 2000, pp. 4051–4056Google Scholar
  5. 5.
    S. Kwon, W. Chang, Y. Youm, On the coarse/fine dual-stage manipulators with robust perturbation compensator, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, 2001, pp. 121–126Google Scholar
  6. 6.
    B. Zhang, Z. Zhu, Developing a linear piezomotor with nanometer resolution and high stiffness. IEEE/ASME Trans. Mechatron. 2(1), 22–29Google Scholar
  7. 7.
    C. Zhao, Ultrasonic Motors: Technologies and Applications (Springer, Berlin, 2011)CrossRefGoogle Scholar
  8. 8.
    B. Watson, J. Friend, L. Yeo, Piezoelectric ultrasonic micro/milli-scale actuators. Sens. Actuators A Phys. 152(2), 219–233 (2009)CrossRefGoogle Scholar
  9. 9.
    F. Ba-Tis, R. Ben-Mrad, A 3-DOF MEMS electrostatic piston-tube actuator. J. Microelectromech. Syst. 24(4), 1173–1184 (2015)Google Scholar
  10. 10.
    D.K.C. Liu, J. Friend, L. Leo, A brief review of actuation at the micro-scale using electrostatics, electromagnetics and piezoelectric ultrasonics. Acoust. Sci. Technol. 31(2), 115–123 (2010)CrossRefGoogle Scholar
  11. 11.
    R. Ben-Mrad, H. Hu, Dynamic modeling of hysteresis in piezoceramics, in Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 1, 2001, pp.510–515Google Scholar
  12. 12.
    A. Henke, M.A. Kümmel, J. Wallaschek, A piezoelectrically driven wire feeding system for high performance wedge-wedge-bonding machines. Mechatronics 9(7), 757–767 (1999)CrossRefGoogle Scholar
  13. 13.
    J. Wallaschek, Ultrasonic motor research in Germany—past, present, future, in Proceedings of the First International Workshop on Ultrasonic Motors and Actuators (2005)Google Scholar
  14. 14.
    J. Wallaschek, Piezoelectric ultrasonic motors. J. Intell. Mater. Syst. Struct. 6(1), 71–83 (1995)CrossRefGoogle Scholar
  15. 15.
    K. Uchino, Piezoelectric ultrasonic motors: overview. Smart Mater. Struct. 7(3), 273 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    V.V. Lavrinenko, M. Nekrasov, Piezoelectric motor. Soviet Patent 217509 (1965)Google Scholar
  17. 17.
    H.V. Barth, Ultrasonic drive motor. IBM Technical Disclosure Bulletin 16(7), 2263 (1973)Google Scholar
  18. 18.
    P.E. Vasiliev, V.S. Dvornin, A.V. Kondratiev, V.F. Kravchenko, U.S. Patent 4,240,141 (U.S. Patent and Trademark Office, Washington, DC, 1980)Google Scholar
  19. 19.
    T. Sashida, Trial construction and operation of an ultrasonic vibration driven motor. Oyo Butsiuri 6(5), 713–718 (1982)Google Scholar
  20. 20.
    T. Sashida, Motor device utilizing ultrasonic oscillation. U.S. Patent 4,562,374 (U.S. Patent and Trademark Office, Washington, DC, 1985)Google Scholar
  21. 21.
    A. Kumada, A piezoelectric ultrasonic motor. Jpn. J. Appl. Phys. 24(S2), 739 (1985)CrossRefGoogle Scholar
  22. 22.
    Y. Ise, Ultrasonic motor. J. Acoust. Soc. Jpn. 54, 6 (1987)Google Scholar
  23. 23.
    I. Prisacariu, C. C. Filipiuc, A general view on the classification and operating principle of piezoelectric ultrasonic motors. (2012 International Conference and Exposition on Electrical and Power Engineering (EPE 2012), 25–27 October, Iasi, Romania)Google Scholar
  24. 24.
    K. Spanner, Survey of the various operating principles of ultrasonic piezomotors, in Proceedings of the 10th International Conference on New Actuators, June 2006Google Scholar
  25. 25.
    S.P. Salisbury, D.F. Waechter, R. Ben-Mrad, S.E. Prasad, R.G. Blacow, B. Yan, Closed-loop control of a complementary clamp piezoworm actuator. IEEE/ASME Trans. Mechatron. 12(6), 590–598 (2007)CrossRefGoogle Scholar
  26. 26.
    S. Salisbury, D.F. Waechter, R. Ben-Mrad, S.E. Prasad, R.G. Blacow, B. Yan, Complementary inchworm actuator for high-force, high-precision applications. IEEE/ASME Trans. Mechatron. 11(3), 265–272 (2006)CrossRefGoogle Scholar
  27. 27.
    P.E. Tenzer, R. Ben-Mrad, A systematic procedure for the design of piezoelectric inchworm precision positioners. IEEE/ASME Trans. Mechatron. 9(2), 427–435 (2004)CrossRefGoogle Scholar
  28. 28.
    D. Roberts, Development of a linear piezoelectric motor based on the inchworm model, in 1999 Symposium on Smart Structures and Materials (International Society for Optics and Photonics, 1999), pp. 705–716.Google Scholar
  29. 29.
    J. Li, R. Sedaghati, J. Dargahi, D. Waechter, Design and development of a new piezoelectric linear Inchworm actuator. Mechatronics 15(6), 651–681 (2005)CrossRefGoogle Scholar
  30. 30.
    J. E. Frank, G. H. Koopmann, W. Chen, G. A. Lesieutre, Design and performance of a high-force piezoelectric inchworm motor, in 1999 Symposium on Smart Structures and Materials (International Society for Optics and Photonics, 1999), pp. 717–723Google Scholar
  31. 31.
    T. Pandell, E. Garcia, Design of a piezoelectric caterpillar motor, in Proceedings of ASME Aerospace Division, vol. 52, 1996, pp. 627–648Google Scholar
  32. 32.
    S.P. Salisbury, R. Ben-Mrad, D.F. Waechter, S.E. Prasad, Design, modeling, and closed-loop control of a complementary clamp piezoworm stage. IEEE/ASME Trans. Mechatron. 14(6), 724–732 (2009)CrossRefGoogle Scholar
  33. 33.
    K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Boston, 1997)Google Scholar
  34. 34.
    “L-104,” Micro Pulse Systems Inc., [Online document],, seen on 27 May 2002
  35. 35.
  36. 36.
  37. 37., “Micromotor packs a punch”, online article, seen on February 2015
  38. 38.
    J. Oliver, R. Neurogaonkar, J. Nelson, C. Bertolini, Rotary piezoelectric motor for vehicle applications. U.S. Patent 5,780,956 (1998)Google Scholar
  39. 39.
    K. Ohnishi, M. Umeda, M. Kurosawa, S. Ueha, Rotary Inchworm-type piezoelectric actuator. Electr. Eng. Jpn. 110(3), 107–109 (1990)CrossRefGoogle Scholar
  40. 40.
    K. Duong, E. Garcia,. Development of a rotary inchworm piezoelectric motor, in Proceedings SPIE Smart Structures and Materials, vol. 2445, 1995, pp. 782–788Google Scholar
  41. 41.
    S. Gursan, Development of a continuous-motion piezoelectric rotary actuator for mechatronics and micropositioning applications. MASc Dissertation, University of Victoria (1996)Google Scholar
  42. 42.
    K. Mori, Piezoelectric rotary actuator. U.S. Patent 4,468,583 (1984)Google Scholar
  43. 43.
    P.E. Tenzer, R. Ben-Mrad, On amplification in inchworm™ precision positioners. Mechatronics 14(5), 515–531 (2004)CrossRefGoogle Scholar
  44. 44.
    P. Tenzer, R. Ben-Mrad, Amplification in Inchworm precision positioners, in 1st joint Canada-US Workshop on Smart Materials and Structures (St. Hubert, Quebec, Canada, 2001), pp.77–84, 17–18 September 2001Google Scholar
  45. 45.
    S.P. Salisbury, R. Ben-Mrad, Analytical stiffness estimation for short flexures. Mechatronics 16(7), 399–403 (2006)CrossRefGoogle Scholar
  46. 46.
    T. Hemsel, J. Wallaschek, A piezoelectric linear vibration drive for high driving force. J Vibroengineering 1, 7–12 (1999)Google Scholar
  47. 47.
    J. Zumeris, Ceramic motor. U.S. Patent 6,064,140 (2000)Google Scholar
  48. 48.
    O. Vyshnevsky, S. Kovalev, W. Wischnewskiy, A novel, single-mode piezoceramic plate actuator for ultrasonic linear motors. Ultrason. Ferroelectr. Freq. Control, IEEE Trans. 52(11), 2047–2053 (2005)CrossRefGoogle Scholar
  49. 49.
    T. Sashida, T. Kenjo, An Introduction to Ultrasonic Motors (Oxford Press, New York, 1993)Google Scholar
  50. 50.
  51. 51.
    V. Klocke, Atomic precision and millimeter range, in Feinwerktechnik, Mikrotechnik, Mikroelektronik, vol. 104 (1996)Google Scholar
  52. 52.
    Y. Liu, W. Chen, J. Liu, S. Shi, A cylindrical standing wave ultrasonic motor using bending vibration transducer. Ultrasonics 51(5), 527–531 (2011)CrossRefGoogle Scholar
  53. 53.
    S. Park, S. He, Standing wave brass-PZT square tubular ultrasonic motor. Ultrasonics 52(7), 880–889 (2012)CrossRefGoogle Scholar
  54. 54.
    X. Lu, J. Hu, L. Yang, C. Zhao, A novel dual stator-ring rotary ultrasonic motor. Sens. Actuators A Phys. 189, 504–511 (2013)CrossRefGoogle Scholar
  55. 55.
    Y. Liu, J. Liu, W. Chen, S. Shi, A cylindrical traveling wave ultrasonic motor using longitudinal vibration transducers. Ferroelectrics 409(1), 117–127 (2010)CrossRefGoogle Scholar
  56. 56.
    Y. Liu, W. Chen, J. Liu, S. Shi, A cylindrical traveling wave ultrasonic motor using longitudinal and bending composite transducer. Sens. Actuators A Phys. 161(1), 158–163 (2010)CrossRefGoogle Scholar
  57. 57.
    Y. Liu, W. Chen, P. Feng, J. Liu, A rotary piezoelectric motor using bending vibrators. Sens. Actuators A Phys. 196, 48–54 (2013)CrossRefGoogle Scholar
  58. 58.
    Y. Liu, W. Chen, P. Feng, J. Liu, A square-type rotary ultrasonic motor with four driving feet. Sens. Actuators A Phys. 180, 113–119 (2012)CrossRefGoogle Scholar
  59. 59.
    X. Lu, J. Hu, L. Yang, C. Zhao, A novel in-plane mode rotary ultrasonic motor. Chin. J. Aeronaut. 27(2), 420–424 (2014)CrossRefGoogle Scholar
  60. 60.
    Y. Liu, W. Chen, J. Liu, S. Shi, A rotary ultrasonic motor using bending vibration transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(10), 2360–2364 (2010)CrossRefGoogle Scholar
  61. 61.
    Y.X. Liu, J.K. Liu, W.S. Chen, X.H. Yang, A rotary ultrasonic motor using radial bending mode of ring with nested PZT excitation. J. Zhejiang Univ. Sci. A 13(3), 189–196 (2012)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Y. Ting, J.M. Yang, C.C. Li, C.C. Yang, Y.C. Shao, P3P-6 modeling and design of a linear actuator by Langevin vibrators, in Ultrasonics Symposium, 2006. IEEE (2006), pp. 2337–2340Google Scholar
  63. 63.
    E. Moreno, P. Acevedo, M. Fuentes, M. Sotomayor, M. Borroto, M.E. Villafuerte, L. Leija, Design and construction of a bolt-clamped Langevin transducer, in International Conference on Electrical and Electronics Engineering, Proceedings (2005), pp. 393–395Google Scholar
  64. 64.
    T. Morita, M.K. Kurosawa, T. Higuchi, Cylindrical micro ultrasonic motor utilizing bulk lead zirconate titanate (PZT). Jpn. J. Appl. Phys. 38(5S), 3347 (1999)CrossRefGoogle Scholar
  65. 65.
    T. Morita, M. Kuribayashi Kurosawa, T. Higuchi, A cylindrical micro ultrasonic motor using PZT thin film deposited by single process hydrothermal method (/spl phi/2.4 mm, L= 10 mm stator transducer). IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1178–1187 (1998)CrossRefGoogle Scholar
  66. 66.
    J. Hu, K. Nakamura, S. Ueha, An analysis of a noncontact ultrasonic motor with an ultrasonically levitated rotor. Ultrasonics 35(6), 459–467 (1997)CrossRefGoogle Scholar
  67. 67.
    Y. Yamayoshi, S. Hirose, Improvement of Characteristics of Noncontact Ultrasonic Motor Using Acoustically Coupled Two Air Gaps. Jpn. J. Appl. Phys. 50(7) (2011)Google Scholar
  68. 68.
    Y. Yamayoshi, J. Shiina, H. Tamura, S. Hirose, Noncontact ultrasonic motor with two flexural standing wave vibration disks. Jpn. J. Appl. Phys. 48(9S1), 09KD10 (2009)Google Scholar
  69. 69.
    J. Lau, S.I. Gubarenko, R. Ben-Mrad, A novel plate-type linear ultrasonic motor with segmented electrodes, in Proceedings of the 1st VMPT (Montreal, QC, 2012)Google Scholar
  70. 70.
    X. Li, W.S. Chen, T. Xie, J.K. Liu, Novel high torque bearingless two-sided rotary ultrasonic motor. J. Zhejiang Univ. Sci. A 8(5), 786–792 (2007)CrossRefGoogle Scholar
  71. 71.
    C.Y. Lu, J.L. Li, W.Y. Pi, Ultrasonic motors using shear-type piezoelectric ceramics, in 2010 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), IEEE (2010, December), pp. 465469Google Scholar
  72. 72.
    Z. Li, C. Zhao, W. Huang, Z.L. Li, Several key issues in developing of cylinder type 3-DOF ultrasonic motor. Sens. Actuators A Phys. 136(2), 704–709 (2007)CrossRefGoogle Scholar
  73. 73.
    W. Qiu, Y. Mizuno, D. Koyama, K. Nakamura, Analysis of lubricating effect of hybrid transducer-type ultrasonic motor, in Proceedings of 32 nd Symposium on Ultrasonic Electronics 32(2E4-3) (2011, November), pp. 301–302Google Scholar
  74. 74.
    S. He, P.R. Chiarot, S. Park, A single vibration mode tubular piezoelectric ultrasonic motor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(5), 1049–1061 (2011)CrossRefGoogle Scholar
  75. 75.
    S.S. Jeong, T.G. Park, M.H. Kim, T.K. Song, Characteristics of a V-type ultrasonic rotary motor. Curr. Appl. Phys. 11(3), S364–S367 (2011)CrossRefGoogle Scholar
  76. 76.
    Y. Hojjat, M.R. Karafi, Introduction of roller interface ultrasonic motor (RIUSM). Sens. Actuators A Phys. 163(1), 304–310 (2010)CrossRefGoogle Scholar
  77. 77.
    T. Park, S. Jeong, H. Chong, K. Uchino, Design of thin cross type ultrasonic motor. J. Electroceramics 24(4), 288–293 (2010)CrossRefGoogle Scholar
  78. 78.
    G.L. Smith, R.Q. Rudy, R.G. Polcawich, D.L. DeVoe, Integrated thin-film piezoelectric traveling wave ultrasonic motors. Sens. Actuators A Phys. 188, 305–311 (2012)CrossRefGoogle Scholar
  79. 79.
    X. Lu, J. Hu, L. Yang, C. Zhao, Principle and experimental verification of novel dual driving face rotary ultrasonic motor. Chin. J. Mech. Eng. 26(5), 1006–1012 (2013)CrossRefGoogle Scholar
  80. 80.
    J.H. Hu, K. Nakamura, S. Ueha, Characteristics of a noncontact ultrasonic motor using acoustic levitation, in Proceedings of Ultrasonics Symposium, 1996. IEEE, vol. 1 (1996, November), pp.373–376Google Scholar
  81. 81.
    Y. Yamayoshi, S. Hirose, Ultrasonic motor not using mechanical friction force. Int. J. Appl. Electromagn. Mater. 3, 179–182 (1992)Google Scholar
  82. 82.
    S. Hirose, Y. Yamayoshi, H. Ono, A small noncontact ultrasonic motor, in Proceedings of Ultrasonics Symposium, 1993. IEEE (1993), pp. 453–456Google Scholar
  83. 83.
    J. Liu, B. Wu, Z. Yang et al., A new type of circular cylindrical non-contact ultrasonic motor. Acta Acustica 3(2), 113–116 (2001) (In Chinese)Google Scholar
  84. 84.
    Y. Ji, C. Zhao, A new type non-contact ultrasonic motor with higher revolution speed. Piezoelectrics & Acoustooptics 28, 527–533 (2006)Google Scholar
  85. 85.
    Y. Ji, C.S. Zhao, Cylinder type non-contact ultrasonic motor. J. Nanjing. Univ. Aeronaut. Astronaut. 37(6), 690–693 (2005)Google Scholar
  86. 86.
    B. Yang, J. Liu, D. Chen, B. Cai, Theoretical and experimental research on a disk-type non-contact ultrasonic motor. Ultrasonics 44(3), 238–243 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations