From Physical to Virtual: Widening the Perspective on Multi-Agent Environments

  • Carlos Carrascosa
  • Franziska Klügl
  • Alessandro Ricci
  • Olivier Boissier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9068)

Abstract

Since more than a decade, the environment is seen as a key element when analyzing, developing or deploying Multi-Agent Systems (MAS) applications. Especially, for the development of multi-agent platforms it has become a key concept, similarly to many application in the area of location-based, distributed systems. An emerging, prominent application area for MAS is related to Virtual Environments. The underlying technology has evolved in a way, that these applications have grown out of science fiction novels till research papers and even real applications. Even more, current technologies enable MAS to be key components of such virtual environments.

In this paper, we widen the concept of the environment of a MAS to encompass new and mixed physical, virtual, simulated, etc. forms of environments. We analyze currently most interesting application domains based on three dimensions: the way different “realities” are mixed via the environment, the underlying natures of agents, the possible forms and sophistication of interactions. In addition to this characterization, we discuss how this widened concept of possible environments influences the support it can give for developing applications in the respective domains.

References

  1. 1.
    Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: a review. ACM Comput. Surv. 43(3), 16:1–16:43 (2011)CrossRefGoogle Scholar
  2. 2.
    Argente, E., Boissier, O., Carrascosa, C., Fornara, N., McBurney, P., Noriega, P., Ricci, A., Sabater-Mir, J., et al.: The role of the environment in agreement technologies. AI Rev. 39(1), 21–38 (2013)Google Scholar
  3. 3.
    Barreteau, O., et al.: Our companion modelling approach. J. Artif. Soc. Soc. Simul. 6(1), 1–6 (2003)Google Scholar
  4. 4.
    Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented programming with jacamo. Sci. Comput. Program. 78(6), 747–761 (2013)CrossRefGoogle Scholar
  5. 5.
    Burdea, G., Coiffet, P.: Virtual Reality Technology. Wiley, New York (2003)Google Scholar
  6. 6.
    Castelfranchi, C., Pezzullo, G., Tummolini, L.: Behavioral implicit communication (BIC): communicating with smart environments via our practical behavior and its traces. Int. J. Ambient Comput. Intell. 2(1), 1–12 (2010)CrossRefGoogle Scholar
  7. 7.
    Castelfranchi, C., Piunti, M., Ricci, A., Tummolini, L.: AMI systems as agent-based mirror worlds: bridging humans and agents through stigmergy. In: Bosse, T. (ed.) Agents and Ambient Intelligence, Ambient Intelligence and Smart Environments, pp. 17–31. IOS Press, Amsterdam (2012)Google Scholar
  8. 8.
    Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison Wesley Longman, Harlow (1999)Google Scholar
  9. 9.
    Gelernter, D.: Mirror Worlds - or the Day Software Puts the Universe in a Shoebox: How it Will Happen and What it Will Mean. Oxford University Press, New York (1992)MATHGoogle Scholar
  10. 10.
    Gibson, W.: Neuromancer. Ace, New York (1984)Google Scholar
  11. 11.
    Klügl, F., Fehler, M., Herrler, R.: About the role of the environment in multi-agent simulations. In: Weyns, D., Van Parunak, H.D., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 127–149. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  12. 12.
    Krueger, M.: Artificial Reality II. Addison-Wesley, New York (1991) Google Scholar
  13. 13.
    Luck, M., Aylett, R.: Applying artificial intelligence to virtual reality: intelligent virtual environments. Appl. Artif. Intell. 14(1), 3–32 (2000)CrossRefGoogle Scholar
  14. 14.
    Dorigo, M., Floreano, D., Gambardella, L.M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. 20(4), 60–71 (2013)CrossRefGoogle Scholar
  15. 15.
    Milgram, P., Kishino, A.F.: Taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. E77–D(12), 1321–1329 (1994)Google Scholar
  16. 16.
    Olsson, T., Salo, M.: Online user survey on current mobile augmented reality applications. In: Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011, pp. 75–84. IEEE Computer Society, Washington, DC, USA (2011)Google Scholar
  17. 17.
    Saunier, J., Balbo, F., Pinson, S.: A formal model of communication and context awareness in multiagent systems. J. Logic Lang. Inform. 23(2), 219–247 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Stephenson, N.: Snow Crash. Bantam Books, New York (1992) Google Scholar
  19. 19.
    Tummolini, L., Castelfranchi, C.: Trace signals: the meanings of stigmergy. In: Weyns, D., Van Parunak, H.D., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 141–156. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  20. 20.
    Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in multiagent systems. Auton. Agent. Multi-Agent Syst. 14(1), 5–30 (2007)CrossRefGoogle Scholar
  21. 21.
    Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of e’gv transportation systems. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 67–74. ACM (2005)Google Scholar
  22. 22.
    Weyns, D., Schumacher, M., Ricci, A., Viroli, M., Holvoet, T.: Environments in multiagent systems. Knowl. Eng. Rev. 20(2), 127–141 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carlos Carrascosa
    • 1
  • Franziska Klügl
    • 2
  • Alessandro Ricci
    • 3
  • Olivier Boissier
    • 4
  1. 1.DSICUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.School of Natural Science and TechnologyÖrebro UniversityÖrebroSweden
  3. 3.DISIAlma Mater Studiorum - Università di BolognaCesenaItaly
  4. 4.FAYOL - ENS Mines and Laboratoire Hubert Curien CNRS:UMR 5516Saint-EtienneFrance

Personalised recommendations