Ranger, An Example of Integration of Robotics into the Home Ecosystem

  • Francesco MondadaEmail author
  • Julia Fink
  • Séverin Lemaignan
  • David Mansolino
  • Florian Wille
  • Karmen Franinović
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 38)


This paper presents the concept and a case study of a robject, a robotic entity embedded in an everyday object. Robjects use the affordance of the original object to ensure an efficient interaction and a high acceptance. The example of the ranger robot shows how this approach can be applied to a domestic environment. We explore the integration of a robot (robject) into a family household, by regarding the home as a ecosystem , which consists of people, things, activities, and interactions. Our evaluation study of the ranger robot in families validates this holistic approach and shows the impact of this type of design in respect to the complexity of the robotic system.


Holistic approach Ecosystem Cooperation with humans Domestic service robots Robject Ranger robot 



This work was supported by the Swiss National Center of Competence in Research “Robotics”.


  1. 1.
    Gates B (2007) A robot in every home. Sci Am 296:58–65CrossRefGoogle Scholar
  2. 2.
    Eurobarometer (2012) Public attitudes towards robots, Technical Report March, 2012Google Scholar
  3. 3.
    Pantofaru C, Takayama L, Foote T, Soto B (2012) Exploring the role of robots in home organization. In: Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction—HRI’12, p 327Google Scholar
  4. 4.
    Bell G, Blythe M, Sengers P (2005) Making by making strange: defamiliarization and the design of domestic technologies. ACM Trans Comput Hum Interact 12:149–173CrossRefGoogle Scholar
  5. 5.
    Bauwens V, Fink J (2012) Will your household adopt your new robot? Interactions 19:60CrossRefGoogle Scholar
  6. 6.
    Duque I, Dautenhahn K, Koay KL, Willcock I, Christianson B (2013) Knowledge-driven user activity recognition for a smart house. Development and validation of a generic and low-cost, resource-efficient system. In: The sixth international conference on advances in computer-human interactions, ACHI, pp 141–146Google Scholar
  7. 7.
    Cavallo F, Aquilano M, Bonaccorsi M, Limosani R, Manzi A, Carrozza MC, Dario P (2013) On the design, development and experimentation of the ASTRO assistive robot integrated in smart environments. In: IEEE international conference on robotics and automation (ICRA), vol 2, pp 4310–4315, May 2013Google Scholar
  8. 8.
    Aquilano M, Carrozza MC, Dario P (2012) Robot-Era project (FP7-ICT-2011.5.4): from the end-users perspective to robotics. Preliminary findings. In: Proceedings of the AAL—ambient assisted living forum. Eindhoven, The NetherlandsGoogle Scholar
  9. 9.
    Coradeschi S, Cesta A, Cortellessa G, Coraci L, Gonzalez J, Karlsson L, Furfari F, Loutfi A, Orlandini A, Palumbo F, Pecora F, von Rump S, Štimec A, Ullberg J, Östlund B (2013) Giraffplus: combining social interaction and long term monitoring for promoting independent living. In: Proceedings of human system interaction (HSI), pp 578–585. IEEE, June 2013Google Scholar
  10. 10.
    Amirabdollahian F, op den Akker R, Bedaf S, Bormann R, Draper H, Evers V, Gelderblom G, Gutierrez Ruiz C, Hewson D, Hu N, Iacono I, Koay K, Krose B, Marti P, Michel H, Prevot-Huille H, Reiser U, Saunders J, Sorell T, Dautenhahn K (2013) Accompany: acceptable robotics companions for ageing years—multidimensional aspects of human-system interactions. In: The 6th international conference on human system interaction (HSI), pp 570–577, June 2013Google Scholar
  11. 11.
    Nani M, Caleb-solly P, Dogramadgi S, Fear C, Heuvel HVD (2010) MOBISERV: an integrated intelligent home environment for the provision of health, nutrition and mobility services to the elderly. In: 4th companion robotics workshop in brusselsGoogle Scholar
  12. 12.
    Gross HM, Schroeter C, Mueller S, Volkhardt M, Einhorn E, Bley A, Martin C, Langner T, Merten M (2011) Progress in developing a socially assistive mobile home robot companion for the elderly with mild cognitive impairment. In: IEEE international conference on intelligent robots and systems, pp 2430–2437Google Scholar
  13. 13.
    Fischinger D, Einramhof P, Wohlkinger W, Papoutsakis K, Mayer P, Panek P, Koertner T, Hofmann S, Argyros A, Vincze M et al (2013) Hobbit-the mutual care robot. In: Workshop-Proceedings of ASROBGoogle Scholar
  14. 14.
    Bacciu D, Barsocchi P, Chessa S, Gallicchio C, Micheli A (2013) An experimental characterization of reservoir computing in ambient assisted living applications. Neural Comput Appl 24:1451–1464CrossRefGoogle Scholar
  15. 15.
    Sequeira J, Lima P, Saffiotti A, Gonzalez-Pacheco V, Salichs M (2013) MOnarCH: Multi-robot cognitive systems operating in hospitals. In: ICRA 2013 workshop on many robot systemsGoogle Scholar
  16. 16.
    Lehmann H, Walters M, Dumitriu A, May A, Koay K, Saez-Pons J, Syrdal D, Wood L, Saunders J, Burke N, Duque-Garcia I, Christianson B, Dautenhahn K (2013) Artists as HRI pioneers: a creative approach to developing novel interactions for living with robots. In: Herrmann G, Pearson M, Lenz A, Bremner P, Spiers A, Leonards U (eds) Social robotics vol 8239. Lecture Notes in Computer Science, pp 402–411. Springer International Publishing, BerlinGoogle Scholar
  17. 17.
    Wurman P, D’Andrea R, Mountz M (2008) Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag 29(1):9–20Google Scholar
  18. 18.
    Fitzgerald C (ed) (2013) Developing baxter. In: IEEE international conference on technologies for practical robot applications (TePRA), pp 1–6Google Scholar
  19. 19.
    Takayama L, Ju W, Nass C (2008) Beyond dirty, dangerous and dull: what everyday people think robots should do. In: Proceedings of the 3rd ACM/IEEE international conference on Human robot interaction, pp 25–32Google Scholar
  20. 20.
    Magnenat S, Rtornaz P, Bonani M, Longchamp V, Mondada F (2011) ASEBA: a modular architecture for event-based control of complex robots. IEEE/ASME Trans Mechatron 16(2):321–329CrossRefGoogle Scholar
  21. 21.
    Fink J, Lemaignan S, Dillenbourg P, Rétornaz P, Vaussard F, Berthoud A, Mondada F, Wille F, Franinovic K (2014) Which robot behavior can motivate children to tidy up their toys ? Design and evaluation of ranger. In: Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction, pp 439–446Google Scholar
  22. 22.
    Green P, Wei-Haas L (1985) The rapid development of user interfaces: experience with the wizard of oz method. In: Proceedings of the human factors and ergonomics society annual meeting, vol 29, pp 470–474. Sage PublicationsGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Francesco Mondada
    • 1
    Email author
  • Julia Fink
    • 2
  • Séverin Lemaignan
    • 1
    • 2
  • David Mansolino
    • 3
  • Florian Wille
    • 4
  • Karmen Franinović
    • 4
  1. 1.Laboratoire de Systèmes Robotiques (LSRO)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Computer-Human Interaction in Learning and Instruction Laboratory (CHILI)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.Distributed Intelligent Systems and Algorithms Laboratory (DISAL)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  4. 4.Embodied Interaction LabZurich University of the ArtsZurichSwitzerland

Personalised recommendations