Advertisement

International Symposium on String Processing and Information Retrieval

SPIRE 2015: String Processing and Information Retrieval pp 277-286 | Cite as

Beyond the Runs Theorem

  • Johannes Fischer
  • Štěpán Holub
  • Tomohiro I
  • Moshe Lewenstein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9309)

Abstract

In [3], a short and elegant proof was presented showing that a word of length n contains at most \(n-3\) runs. Here we show, using the same technique and a computer search, that the number of runs in a binary word of length n is at most \(\frac{22}{23}n<0.957n\).

Keywords

Runs Lyndon words Combinatorics on words 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Bannai, H., Giraud, M., Kusano, K., Matsubara, W., Shinohara, A., Simpson, J.: The number of runs in a ternary word. In: Proc. PSC, pp. 178–181 (2010)Google Scholar
  3. 3.
    Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs” theorem (2014). arXiv:1406.0263 [cs.DM]
  4. 4.
    Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: A new characterization of maximal repetitions by Lyndon trees. In: Proc. SODA, pp. 562–571 (2015)Google Scholar
  5. 5.
    Crochemore, M., Ilie, L.: Maximal repetitions in strings. Journal of Computer and System Sciences, 796–807 (2008)Google Scholar
  6. 6.
    Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: Algorithms and combinatorics. Theor. Comput. Sci. 410(50), 5227–5235 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Crochemore, M., Ilie, L., Tinta, L.: The “runs” conjecture. Theor. Comput. Sci. 412(27), 2931–2941 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Deza, A., Franek, F.: Bannai et al. method proves the d-step conjecture for strings (2015)Google Scholar
  9. 9.
    Franek, F., Yang, Q.: An asymptotic lower bound for the maximal number of runs in a string. International Journal of Foundations of Computer Science 1(195), 195–203 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Giraud, M.: Not so many runs in strings. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 232–239. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  11. 11.
    Giraud, M.: Asymptotic behavior of the numbers of runs and microruns. Information and Computation 207(11), 1221–1228 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Iliopoulos, C.S., Moore, D., Smyth, W.: A characterization of the squares in a fibonacci string. Theor. Comput. Sci. 172(1–2), 281–291 (1997)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proc. FOCS, pp. 596–604 (1999)Google Scholar
  14. 14.
    Kusano, K., Narisawa, K., Shinohara, A.: On morphisms generating run-rich strings. In: Proc. PSC, pp. 35–47 (2013)Google Scholar
  15. 15.
    Main, M.G.: Detecting leftmost maximal periodicities. Discrete Applied Mathematics 25(1–2), 145–153 (1989)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Matsubara, W., Kusano, K., Ishino, A., Bannai, H., Shinohara, A.: New lower bounds for the maximum number of runs in a string. In: Proc. PSC, pp. 140–145 (2008)Google Scholar
  17. 17.
    Puglisi, S.J., Simpson, J., Smyth, W.F.: How many runs can a string contain? Theor. Comput. Sci. 401, 165–171 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rytter, W.: The number of runs in a string: improved analysis of the linear upper bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 184–195. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  19. 19.
    Simpson, J.: Modified Padovan words and the maximum number of runs in a word. Australas. J. Comb. 46, 129–145 (2010)MATHGoogle Scholar
  20. 20.
    Smyth, W.F.: Repetitive perhaps, but certainly not boring. Theor. Comput. Sci. 249(2), 343–355 (2000)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Smyth, W.F.: Computing regularities in strings: A survey. Eur. J. Comb. 34(1), 3–14 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Johannes Fischer
    • 1
  • Štěpán Holub
    • 2
  • Tomohiro I
    • 1
  • Moshe Lewenstein
    • 3
  1. 1.Department of Computer ScienceTU DortmundDortmundGermany
  2. 2.Department of AlgebraCharles UniversityPrahaCzech Republic
  3. 3.Department of Computer ScienceBar-Ilan UniversityRamat GanIsrael

Personalised recommendations