R2U2: Monitoring and Diagnosis of Security Threats for Unmanned Aerial Systems

  • Johann SchumannEmail author
  • Patrick MoosbruggerEmail author
  • Kristin Y. RozierEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9333)


We present R2U2, a novel framework for runtime monitoring of security properties and diagnosing of security threats on-board Unmanned Aerial Systems (UAS). R2U2, implemented in FPGA hardware, is a real-time, Realizable, Responsive, Unobtrusive Unit for security threat detection. R2U2 is designed to continuously monitor inputs from the GPS and the ground control station, sensor readings, actuator outputs, and flight software status. By simultaneously monitoring and performing statistical reasoning, attack patterns and post-attack discrepancies in the UAS behavior can be detected. R2U2 uses runtime observer pairs for linear and metric temporal logics for property monitoring and Bayesian networks for diagnosis of security threats. We discuss the design and implementation that now enables R2U2 to handle security threats and present simulation results of several attack scenarios on the NASA DragonEye UAS.


Bayesian Network Temporal Logic Linear Temporal Logic Security Threat Attack Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adapteva: The Parallella Board.
  2. 2.
    Ahmed, A., Lisitsa, A., Dixon, C.: TeStID: a high performance temporal intrusion detection system. In: Proceedings of the ICIMP 2013, pp. 20–26 (2013)Google Scholar
  3. 3.
    APM:Plane, Open Source Fixed-Wing Aircraft UAV.
  4. 4.
    Bilge, L., Dumitras, T.: Before we knew it: an empirical study of zero-day attacks in the real world. In: Proceedings of the CCS 2012, pp. 833–844 (2012)Google Scholar
  5. 5.
    Bushnell, D., Denney, E., Enomoto, F., Pai, G., Schumann, J.: Preliminary recommendations for the collection, storage, and analysis of UAS safety data. Technical report NASA/TM-2013-216624, NASA Ames Research Center (2013)Google Scholar
  6. 6.
    Eulich, W.: Did Iran just down a US drone by ‘spoofing’? Christian Science Monitor (2012).
  7. 7.
    GAO: Air Traffic Control: FAA Needs a More Comprehensive Approach to Address Cybersecurity As Agency Transitions to NextGen. Technical report GAO-15-370, United States Government Accountability Office (2015).
  8. 8.
    Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and Bayesian network reasoners on-board FPGAs: flight-certifiable system health management for embedded systems. In: Proceedings of the RV 2014, pp. 215–230 (2014)Google Scholar
  9. 9.
    Humphreys, T.: Statement on the Vulnerability of Civil Unmanned Aerial Vehicles and Other Systems to Civil GPS Spoofing. University of Texas at Austin (2012)Google Scholar
  10. 10.
    Javaid, A.Y., Sun, W., Devabhaktuni, V.K., Alam, M.: Cyber security threat analysis and modeling of an unmanned aerial vehicle system. In: Proceedings of the HST 2012, pp. 585–590. IEEE (2012)Google Scholar
  11. 11.
    JSBSim: Open Source Flight Dynamics Model.
  12. 12.
    Karimi, N.: Iran Drone Capture Claim: State TV Airs Images Allegedly Extracted From U.S. Aircraft (video). The World Post (2013).
  13. 13.
    Kerns, A.J., Shepard, D.P., Bhatti, J.A., Humphreys, T.E.: Unmanned aircraft capture and control via GPS spoofing. J. Field Robot. 31(4), 617–636 (2014)CrossRefGoogle Scholar
  14. 14.
    Kim, A., Wampler, B., Goppert, J., Hwang, I., Aldridge, H.: Cyber attack vulnerabilities analysis for unmanned aerial vehicles. Infotech@Aerospace (2012)Google Scholar
  15. 15.
    Lu, H., Forin, A.: The Design and Implementation of P2V, An Architecture for Zero-Overhead Online Verification of Software Programs. MSR-TR-2007-99, Microsoft Research (2007).
  16. 16.
    MAVLink: Micro Air Vehicle Protocol.
  17. 17.
    MAVProxy: A UAV Ground Station Software Package for MAVLink Based Systems.
  18. 18.
    Mengshoel, O.J., Chavira, M., Cascio, K., Poll, S., Darwiche, A., Uckun, S.: Probabilistic model-based diagnosis: an electrical power system case study. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 40(5), 874–885 (2010)CrossRefGoogle Scholar
  19. 19.
    Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP runtime verification framework. Int. J. Softw. Tools Technol. Transfer 14(3), 249–289 (2012)CrossRefGoogle Scholar
  20. 20.
    Naldurg, P., Sen, K., Thati, P.: A temporal logic based framework for intrusion detection. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 359–376. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  21. 21.
    Olivain, J., Goubault-Larrecq, J.: The Orchids intrusion detection tool. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 286–290. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  22. 22.
    Pearl, J.: A constraint propagation approach to probabilistic reasoning. In: Proceedings of the UAI, pp. 31–42. AUAI Press (1985)Google Scholar
  23. 23.
    Pellizzoni, R., Meredith, P., Caccamo, M., Rosu, G.: Hardware runtime monitoring for dependable COTS-based real-time embedded systems. In: RTSS, pp. 481–491 (2008)Google Scholar
  24. 24.
    Perry, S.: Subcommittee hearing: unmanned aerial system threats: exploring security implications and mitigation technologies. Committee on Homeland Security (2015).
  25. 25.
    Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs for system health management of real-time systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 357–372. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  26. 26.
    Schumann, J., Mbaya, T., Mengshoel, O.J., Pipatsrisawat, K., Srivastava, A., Choi, A., Darwiche, A.: Software health management with Bayesian networks. Innovations Syst. Softw. Eng. 9(2), 1–22 (2013)Google Scholar
  27. 27.
    Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.: Towards real-time, on-board, hardware-supported sensor and software health management for unmanned aerial systems. In: Proceedings of the PHM 2013, pp. 381–401 (2013)Google Scholar
  28. 28.
    Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.: Towards real-time, on-board, hardware-supported sensor and software health management for unmanned aerial systems. Int. J. Prognostics Health Manage. 6(1), 1–27 (2015)Google Scholar
  29. 29.
    Shachtman, N., Axe, D.: Most U.S. drones openly broadcast secret video feeds. Wired (2012).
  30. 30.
    Shepard, D.P., Bhatti, J.A., Humphreys, T.E.: Drone hack. GPS World 23(8), 30–33 (2012)Google Scholar
  31. 31.
    USAF: Aircraft Accident Investigation: Rq-1l, s/n 96–3023. AIB Class A Aerospace Mishaps (2000).

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.SGT, Inc.NASA AmesMoffett FieldUSA
  2. 2.University of CincinnatiCincinnatiUSA

Personalised recommendations