Some Remarks on the Optimization-Based Trajectory Reconstruction of an RGB-D Sensor

  • Adam Schmidt
  • Marek Kraft
  • Dominik Belter
  • Andrzej Kasiński
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 389)


In this paper we present an analysis of the optimization-based trajectory reconstruction of an RGB-D sensor. Several approaches varying in the error function formulation as well as the camera’s poses and features’ positions initialization are considered. Their performance in terms of both the accuracy and the processing time is evaluated within a simulated environment.


Sparse bundle adjustment Structure from motion RGB-D Trajectory reconstruction 



This research was financed by the Polish National Science Centre grant funded according to the decision DEC-2013/09/B/ST7/01583, which is gratefully acknowledged.


  1. 1.
    Davison, A., Reid, I., Molton, N., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)CrossRefGoogle Scholar
  2. 2.
    Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3D mapping with an RGB-D camera. IEEE Trans. Robot. (T-RO) 30(1), 177–187 (2013)Google Scholar
  3. 3.
    Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Intell. Trans. Syst. Mag. 2(4), 31–43 (2010)Google Scholar
  4. 4.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2003)Google Scholar
  5. 5.
    Kaess, M., Dellaert, F.: Probabilistic structure matching for visual SLAM with a multi-camera rig. Comput. Vis. Image Underst. 114(2), 286–296 (2010), special issue on Omnidirectional Vision, Camera Networks and Non-conventional CamerasGoogle Scholar
  6. 6.
    Khoshelham, K., Elberink, S.O.: Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors 12(2), 1437–1454 (2012)CrossRefGoogle Scholar
  7. 7.
    Lachat, E., Macher, H., Mittet, M.A., Landes, T., Grussenmeyer, P.: First experiences with kinect v2 sensor for close range 3D modelling. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2015)Google Scholar
  8. 8.
    Lourakis, M.I., Argyros, A.A.: SBA: a software package for generic sparse bundle adjustment. ACM Trans. Math. Softw. (TOMS) 36(1), 2 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton. Robots 4(4), 333–349 (1997)CrossRefGoogle Scholar
  10. 10.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored solution to the simultaneous localization and mapping problem. In: Eighteenth National Conference on Artificial Intelligence. pp. 593–598. American Association for Artificial Intelligence, Menlo Park, CA, USA (2002)Google Scholar
  11. 11.
    Nowicki, M., Skrzypczyński, P.: Combining photometric and depth data for lightweight and robust visual odometry. In: 2013 European Conference on Mobile Robots (ECMR), pp. 125–130 (Sept 2013)Google Scholar
  12. 12.
    Park, J.H., Shin, Y.D., Bae, J.H., Baeg, M.H.: Spatial uncertainty model for visual features using a KinectTM sensor. Sensors 12(7), 8640–8662 (2012)CrossRefGoogle Scholar
  13. 13.
    Schmidt, A., Fularz, M., Kraft, M., Kasiński, A., Nowicki, M.: An indoor RGB-D dataset for the evaluation of robot navigation algorithms. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems, Lecture Notes in Computer Science, vol. 8192, pp. 321–329. Springer International Publishing (2013)Google Scholar
  14. 14.
    Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 573–580. IEEE (2012)Google Scholar
  15. 15.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment—a modern synthesis. In: Vision algorithms: theory and practice, pp. 298–372. Springer (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Adam Schmidt
    • 1
  • Marek Kraft
    • 1
  • Dominik Belter
    • 1
  • Andrzej Kasiński
    • 1
  1. 1.Institute of Control and Information Engineering, Poznań University of TechnologyPoznańPoland

Personalised recommendations