Automatic Analysis of Vehicle Trajectory Applied to Visual Surveillance

  • Adam NowosielskiEmail author
  • Dariusz Frejlichowski
  • Paweł Forczmański
  • Katarzyna Gościewska
  • Radosław Hofman
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 389)


In this paper we discuss a problem of automatic analysis of vehicles trajectories in the context of illegal movements. It is crucial to detect restricted or security critical behaviour on roads, especially for safety protection and fluent traffic. Here, we propose an vision-based algorithm for vehicle detection and tracking, which is later employed to recognize patterns in resultant trajectories. Experiments were performed on real video streams. They gave encouraging results.


Vehicle detection Vehicle tracking Vehicle behaviour analysis  Trajectory analysis Intelligent transportation systems (ITS) 



The project “Security system for public spaces—‘SM4Public’ prototype construction and implementation” (original title: Budowa i wdrożenie prototypu systemu bezpieczeństwa przestrzeni publicznej ‘SM4Public’) is a project co-founded by European Union (EU) (project number PL: POIG.01.04.00-32-244/13, value: 12.936.684,77 PLN, EU contribution: 6.528.823,81 PLN, realization period: 01.06.2014–31.10.2015). European Funds-for the development of innovative economy (Fundusze Europejskie-dla rozwoju innowacyjnej gospodarki).


  1. 1.
    Aarthi, R., Padmavathi, S., Amudha, J.: Vehicle detection in static images using color and corner map. In: 2010 International Conference on Recent Trends in Information, Telecommunication and Computing, pp. 244–246 (2010)Google Scholar
  2. 2.
    Bradski, G.: Computer vision face tracking for use in a perceptual user interface. Intel Technol. J. Microcomputer Research Lab, Intel Corporation (1998)Google Scholar
  3. 3.
    Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition ICPR94, pp. 566–568, Jerusalem, Israel (1994)Google Scholar
  4. 4.
    Fabian, T.: Parking lot occupancy detection using computational fluid dynamics. In: Burduk, R., et al. (eds.) CORES 2013. AISC 226, pp. 733–742 (2013)Google Scholar
  5. 5.
    Forczmański, P., Seweryn, M.: Surveillance video stream analysis using adaptive background model and object recognition. Comput. Vis. Graph., LNCS 6374, 114–121 (2010)CrossRefGoogle Scholar
  6. 6.
    Frejlichowski, D., Forczmański, P., Nowosielski, A., Gościewska, K., Hofman, R.: SmartMonitor: an approach to simple, intelligent and affordable visual surveillance system. In: Bolc, L., et al. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 726–734. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Frejlichowski, D., Gościewska, K., Forczmański, P., Nowosielski, A., Hofman, R.: Extraction of the foreground regions by means of the adaptive background modelling based on various colour components for a visual surveillance system. In: Burduk, R., et al. (eds.) CORES 2013. AISC 226, pp. 351–360. Springer, Heidelberg (2013)Google Scholar
  8. 8.
    Frejlichowski, D., Gościewska, K., Forczmański, P., Hofman, R.: SmartMonitor—an intelligent security system for the protection of individuals and small properties with the possibility of home automation. Sensors 14, 9922–9948 (2014)CrossRefGoogle Scholar
  9. 9.
    Frejlichowski, D., Gościewska, K., Forczmański, P., Hofman, R.: Application of foreground object patterns analysis for event detection in an innovative video surveillance system. Pattern Anal. Appl. 1–12 (2014). doi: 10.1007/s10044-014-0405-7
  10. 10.
    Hu, W., Xiao, X., Xie, D., Tan, T.: Traffic accident prediction using vehicle tracking and trajectory analysis. In: Intelligent Transportation Systems. Proceedings. 2003 IEEE, vol. 1, pp. 220–225 (2003)Google Scholar
  11. 11.
    Kovacic, K., Ivanjko, E., Gold, H.: Computer vision systems in road vehicles: a review. In: Proceedings of the Croatian Computer Vision Workshop, Year 1, pp. 25–30. Zagreb, Croatia (2013)Google Scholar
  12. 12.
    Miklasz, M., Nowosielski, A., Kawka, G.: Automated supervision systems for limited traffic zones. Arch. Transp. Syst. Telemat. 6(2), 41–45 (2013)Google Scholar
  13. 13.
    Mimbela, L.E.Y., Klein, L.A.: Summary of vehicle detection and surveillance technologies used in intelligent transportation systems. Federal Highway Administration’s (FHWA) Intelligent Transportation Systems Joint Program Office (2003)Google Scholar
  14. 14.
    Munuzuri, J., Corts, P., Guadix, J., Onieva, L.: City logistics in Spain: why it might never work. Cities 29(2), 133–141 (2012)CrossRefGoogle Scholar
  15. 15.
    Pandit, V., Doshi, J., Mehta, D., Mhatre, A., Janardhan, A.: Smart traffic control system using image processing. Int. J. Emerg. Trends Technol. Comput. Sci. (IJETTCS) 3(1), 280–283 (2014)Google Scholar
  16. 16.
    Song, H.-S., Lu, S.-N., Ma, X., Yang, Y., Liu, X.-Q., Zhang, P.: Vehicle behavior analysis using target motion trajectories. IEEE Trans. Veh. Technol. 63(8), 3580–3591 (2014)CrossRefGoogle Scholar
  17. 17.
    Tang, Y., Zhang, C., Gu, R., Li, P., Yang, B.: Vehicle detection and recognition for intelligent traffic surveillance system. Multimedia Tools and Applications (online). Springer (2015)Google Scholar
  18. 18.
    Viola, P., Jones, M.: Robust real-time object detection. In: Second International Workshop on Statistical and Computational Theories of Vision—Modeling, Learning, Computing, and Sampling, Vancouver, Canada (2001)Google Scholar
  19. 19.
    Wu, J., Cui, Z., Chen, J., Zhang, G.: A survey on video-based vehicle behavior analysis algorithms. J. Multimed. 7(3), 223–230 (2012)CrossRefGoogle Scholar
  20. 20.
    Zajac, W., Kołopieńczyk, M., Andrzejewski, G.: Traffic load detection system. Arch. Transp. Syst. Telemat. 6(3), 46–48 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Adam Nowosielski
    • 1
    Email author
  • Dariusz Frejlichowski
    • 1
  • Paweł Forczmański
    • 1
  • Katarzyna Gościewska
    • 1
    • 2
  • Radosław Hofman
    • 2
  1. 1.Faculty of Computer ScienceWest Pomeranian University of TechnologySzczecinPoland
  2. 2.Smart Monitor sp. z o.o.SzczecinPoland

Personalised recommendations