Advertisement

Classifier Selection Uses Decision Profiles in Binary Classification Task

  • Paulina Baczyńska
  • Robert BurdukEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 389)

Abstract

The dynamic selection of classifiers plays an important role in the creation of an ensemble of classifiers. The paper presents the dynamic selection of a posteriori probability function based on the analysis of the decision profiles. The idea of the dynamic selection is exemplified with the binary classification task. In addition, a number of experiments have been carried out on ten benchmark data sets.

Keywords

Ensemble pruning methods Classifiers selection Multiple classifier system 

Notes

Acknowledgments

This work was supported by the Polish National Science Center under the grant no. DEC-2013/09/B/ST6/02264 and by the statutory funds of the Department of Systems and Computer Networks, Wroclaw University of Technology.

References

  1. 1.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York Inc, Secaucus (2006)zbMATHGoogle Scholar
  2. 2.
    Britto, A.S., Sabourin, R., Oliveira, L.E.: Dynamic selection of classifiers—a comprehensive review. Pattern Recogn. 47(11), 3665–3680 (2014)CrossRefGoogle Scholar
  3. 3.
    Cavalin, P.R., Sabourin, R., Suen, C.Y.: Dynamic selection approaches for multiple classifier systems. Neural Comput. Appl. 22(3–4), 673–688 (2013)CrossRefGoogle Scholar
  4. 4.
    Cyganek, B.: One-class support vector ensembles for image segmentation and classification. J. Math. Imaging Vision 42(2–3), 103–117 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cyganek, B., Woźniak, M.: Vehicle logo recognition with an ensemble of classifiers. In: Intelligent Information and Database Systems, Lecture Notes in Computer Science, vol. 8398, pp. 117–126. Springer (2014)Google Scholar
  6. 6.
    Didaci, L., Giacinto, G., Roli, F., Marcialis, G.L.: A study on the performances of dynamic classifier selection based on local accuracy estimation. Pattern Recogn. 38, 2188–2191 (2005)Google Scholar
  7. 7.
    Forczmański, P., Łabędź, P.: Recognition of occluded faces based on multi-subspace classification. In: Computer Information Systems and Industrial Management, Lecture Notes in Computer Science, vol. 8104, pp. 148–157. Springer (2013)Google Scholar
  8. 8.
    Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.ics.uci.edu/ml
  9. 9.
    Frejlichowski, D.: An algorithm for the automatic analysis of characters located on car license plates. In: Image Analysis and Recognition, Lecture Notes in Computer Science, vol. 7950, pp. 774–781. Springer (2013)Google Scholar
  10. 10.
    Giacinto, G., Roli, F.: An approach to the automatic design of multiple classifier systems. Pattern Recogn. Lett. 22, 25–33 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)zbMATHGoogle Scholar
  12. 12.
    Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 66–75 (1994)CrossRefGoogle Scholar
  13. 13.
    Jackowski, K., Woźniak, M.: Method of classifier selection using the genetic approach. Expert Syst. 27(2), 114–128 (2010)CrossRefGoogle Scholar
  14. 14.
    Jackowski, K., Krawczyk, B., Woźniak, M.: Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning. Int. J. Neural Syst. 24(03) (2014)Google Scholar
  15. 15.
    Kittler, J., Alkoot, F.M.: Sum versus vote fusion in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 110–115 (2003)CrossRefGoogle Scholar
  16. 16.
    Kuncheva, L.I.: A theoretical study on six classifier fusion strategies. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 281–286 (2002)CrossRefGoogle Scholar
  17. 17.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York (2004)Google Scholar
  18. 18.
    Lam, L., Suen, C.Y.: Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Trans. Syst. Man Cybern. Part A 27(5), 553–568 (1997)CrossRefGoogle Scholar
  19. 19.
    Przewoźniczek, M., Walkowiak, K., Woźniak, M.: Optimizing distributed computing systems for k-nearest neighbours classifiers-evolutionary approach. Logic J. IGPL 357–372 (2010)Google Scholar
  20. 20.
    Ranawana, R., Palade, V.: Multi-classifier systems: review and a roadmap for developers. Int. J. Hybrid Intell. Syst. 3(1), 35–61 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Rejer, I.: Genetic algorithms in eeg feature selection for the classification of movements of the left and right hand. In: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol. 226, pp. 579–589. Springer (2013)Google Scholar
  22. 22.
    Ruta, D., Gabrys, B.: Classifier selection for majority voting. Inf. Fusion 6(1), 63–81 (2005)CrossRefzbMATHGoogle Scholar
  23. 23.
    Smętek, M., Trawiński, B.: Selection of heterogeneous fuzzy model ensembles using self-adaptive genetic algorithms. New Gener. Comput. 29(3), 309–327 (2011)CrossRefGoogle Scholar
  24. 24.
    Suen, C.Y., Legault, R., Nadal, C.P., Cheriet, M., Lam, L.: Building a new generation of handwriting recognition systems. Pattern Recogn. Lett. 14(4), 303–315 (1993)CrossRefGoogle Scholar
  25. 25.
    Woloszyński, T., Kurzyński, M.: A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recogn. 44(10–11), 2656–2668 (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland

Personalised recommendations