Advertisement

QuadCloud: A Rapid Response Force with Quadrotor Teams

  • Kartik MohtaEmail author
  • Matthew Turpin
  • Alex Kushleyev
  • Daniel Mellinger
  • Nathan Michael
  • Vijay Kumar
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 109)

Abstract

We describe the component technologies, the architecture and system design, and experimentation with a team of flying robots that can respond to emergencies or security threats where there is urgent need for situational awareness. We envision the team being launched either by high level commands from a dispatcher or automatically triggered by a threat detection system (for example, an alarm). Our first response team consists of autonomous quadrotors with downward-facing cameras that can navigate to a designated location in an urban environment and develop a integrated picture of areas around a building or a city block. We specifically address the design of the platform capable of autonomous navigation at speeds of over 30 mph, the control and estimation software, the algorithms for trajectory planning and allocation of robots to specific tasks, and a user interface that allows the specification of tasks with a situational awareness display.

Keywords

Aerial robotics Multi-robot systems Field robotics 

Notes

Acknowledgments

We are grateful for the support of ARL grant W911NF-08-2-0004, ONR grants N00014-07-1-0829, N00014-09-1-1051 and N00014-09-1-103, NSF grants PFI-1113830 and IIS-1138847, and TerraSwarm, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

References

  1. 1.
    Achtelik, M., Achtelik, M., Weiss, S., Siegwart, R.: Onboard IMU and monocular vision based control for MAVs in unknown in- and outdoor environments. In: IEEE International Conference on Robotics and Automation (ICRA) (2011)Google Scholar
  2. 2.
    Ars Electronica: Spaxels–Ars Electronica Quadcopter Swarm. http://www.aec.at/spaxels/en
  3. 3.
    Bouabdallah, S., Siegwart, R.: Full control of a quadrotor. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 153–158 (2007)Google Scholar
  4. 4.
    Envarli, I.C., Adams, J.A.: Task lists for human-multiple robot interaction. In: IEEE International Workshop on Robot and Human Interactive Communication, 2005, pp. 119–124. IEEE (2005)Google Scholar
  5. 5.
    Erdmann, M., Lozano-Perez, T.: On multiple moving objects. In: 1986 IEEE International Conference on Robotics and Automation. vol. 3, pp. 1419–1424 (1986)Google Scholar
  6. 6.
    Hoffmann, G.M., Rajnarayan, D.G., Waslander, S.L., Dostal, D., Jang, J.S., Tomlin, C.J.: The Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC). In: The 23rd Digital Avionics Systems Conference, pp. 12.E.4/1–10. IEEE (2004)Google Scholar
  7. 7.
    Huang, H., Hoffmann, G., Waslander, S., Tomlin, C.: Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering. In: 2009 IEEE International Conference on Robotics and Automation (ICRA), pp. 3277–3282 (2009)Google Scholar
  8. 8.
    Karney, C.F.F.: GeographicLib library. http://geographiclib.sf.net/
  9. 9.
    Kushleyev, A., Mellinger, D., Kumar, V.: Towards a swarm of agile micro quadrotors. In: Robotics: Science and Systems (2012)Google Scholar
  10. 10.
    Latombe, J.C.: Robot motion planning (1991)Google Scholar
  11. 11.
    Lee, T., Leok, M., McClamroch, N.H.: Geometric tracking control of a quadrotor UAV on SE(3). In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 5420–5425 (2010)Google Scholar
  12. 12.
    Leishman, R.C., Macdonald, J.C., Beard, R.W., McLain, T.W.: Quadrotors and accelerometers: state estimation with an improved dynamic model. IEEE Control Syst. Mag. 34(1), 28–41 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lindsey, Q., Mellinger, D., Kumar, V.: Construction with quadrotor teams. Auton. Robots 33(3), 323–336 (2012)CrossRefGoogle Scholar
  14. 14.
    Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)CrossRefGoogle Scholar
  15. 15.
    Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2520–2525. Shanghai (2011)Google Scholar
  16. 16.
    Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The GRASP multiple micro-UAV testbed. IEEE Robot. Autom. Mag. 17(3), 56–65 (2010)CrossRefGoogle Scholar
  17. 17.
    Shen, S., Mulgaonkar, Y., Michael, N., Kumar, V.: Multi-sensor fusion for robust autonomous flight in indoor and outdoor environments with a rotorcraft MAV. In: IEEE International Conference on Robotics and Automation, Hong Kong (2014)Google Scholar
  18. 18.
    Shen, S., Michael, N., Kumar, V.: Autonomous multi-floor indoor navigation with a computationally constrained mav. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 20–25 (2011)Google Scholar
  19. 19.
    Turpin, M., Michael, N., Kumar, V.: Concurrent assignment and planning of trajectories for large teams of interchangeable robots. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 842–848. Karlsruhe (2013a)Google Scholar
  20. 20.
    Turpin, M., Mohta, K., Michael, N., Kumar, V.: Goal assignment and trajectory planning for large teams of aerial robots. In: Proceedings of Robotics: Science and Systems. Berlin (2013b)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kartik Mohta
    • 1
    Email author
  • Matthew Turpin
    • 1
  • Alex Kushleyev
    • 2
  • Daniel Mellinger
    • 2
  • Nathan Michael
    • 3
  • Vijay Kumar
    • 1
  1. 1.GRASP LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.KMel RoboticsPhiladelphiaUSA
  3. 3.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations