A Design Environment for the Rapid Specification and Fabrication of Printable Robots

  • Ankur MehtaEmail author
  • Nicola Bezzo
  • Peter Gebhard
  • Byoungkwon An
  • Vijay Kumar
  • Insup Lee
  • Daniela Rus
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 109)


In this work, we have developed a design environment to allow casual users to quickly and easily create custom robots. A drag-and-drop graphical interface allows users to intuitively assemble electromechanical systems from a library of predesigned parametrized components. A script-based infrastructure encapsulates and automatically composes mechanical, electrical, and software subsystems based on the user input. The generated design can be passed through output plugins to produce fabrication drawings for a range of rapid manufacturing processes, along with the necessary firmware and software to control the device. From an intuitive description of the desired specification, this system generates ready-to-use printable robots on demand.


Design co-generation Personal robots Printable robots 



This material is based on research sponsored by the National Science Foundation awards EFRI-1240383 and CCF-1138967, for which the authors express thanks.


  1. 1.
    Mavroidis, C., DeLaurentis, K.J., Won, J., Alam, M.: Fabrication of non-assembly mechanisms and robotic systems using rapid prototyping. J. Mech. Des. 123(4), 516–524 (2001)CrossRefGoogle Scholar
  2. 2.
    Richter, C., Lipson, H.: Untethered hovering flapping flight of a 3d-printed mechanical insect. Artif. life 17(2), 73–86 (2011)CrossRefGoogle Scholar
  3. 3.
    Rossiter, J., Walters, P., Stoimenov, B.: Printing 3d dielectric elastomer actuators for soft robotics. In SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, pp. 72870H–72870H (2009)Google Scholar
  4. 4.
    Hoover, A.M., Fearing, R.S.: Fast scale prototyping for folded millirobots. In Robotics and Automation (ICRA), pp. 886–892. IEEE (2008)Google Scholar
  5. 5.
    Liu, Y., Boyles, J., Genzer, J., Dickey, M.: Self-folding of polymer sheets using local light absorption. Soft Matter 8, 1764–1769 (2012)CrossRefGoogle Scholar
  6. 6.
    Shimoyama, I., Miura, H., Suzuki, K., Ezura, Y.: Insect-like microrobots with external skeletons. IEEE Control Syst. 13(1), 37–41 (1993)CrossRefGoogle Scholar
  7. 7.
    Brittain, S., et al.: Microorigami: Fabrication of small, three-dimensional, metallic structures. J. Phys. Chem. B 105(2), 347–350 (2001)CrossRefGoogle Scholar
  8. 8.
    Hawkes, E., et al.: Programmable matter by folding. Proc. Natl. Acad. Sci. 107(28), 12441–12445 (2010)CrossRefGoogle Scholar
  9. 9.
    Tolley, M., Felton, S., Miyashita, S., Xu, L., Shin, B., Zhou, M., Rus, D., Wood, R.: Self-folding shape memory laminates for automated fabrication. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE (2013)Google Scholar
  10. 10.
    Lang, R.: Origami Design Secrets : Mathematical Methods for an Ancient Art. A K Peters/CRC Press, Boca Raton (2012)zbMATHGoogle Scholar
  11. 11.
    Demaine, E., Fekete, S., Lang, R.: Circle packing for origami design is hard. In: Proceddings of the 5th International Conference on Origami in Science, Mathematics and Education, pp. 609–626 (2010)Google Scholar
  12. 12.
    Mehta, A.M., et al.: A scripted printable quadrotor: rapid design and fabrication of a folded MAV. In 16th International Symposium on Robotics Research (2013)Google Scholar
  13. 13.
    Mehta, A.M., DelPreto, J., Rus, D.: Cogeneration of mechanical, electrical, and software designs for printable robots from structural specifications. In Intelligent Robots and Systems (IROS), (2014) (to appear)Google Scholar
  14. 14.
    Mathworks Simulink. Accessed 26 May 2014
  15. 15.
    NI Labview. Accessed 26 May 2014
  16. 16.
    King, A.L., Feng, L., Sokolsky, O., Lee, I.: Assuring the safety of on-demand medical cyber-physical systems. In 1st International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA), pp. 1–6. IEEE (2013)Google Scholar
  17. 17.
    Lego mindstorms. Accessed 26 May 2014
  18. 18.
    VEX Robotics. Accessed 26 May 2014
  19. 19.
    Bezzo, N., Park, J., King, A., Geghard, P., Ivanov, R., Lee, I.: Demo abstract: Roslab a modular programming environment for robotic applications. In ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), IEEE (2014) (to appear)Google Scholar
  20. 20.
    An, B., et al.: An end-to-end approach to making self-folded 3d surface shapes by uniform heating. In IEEE International Conference on Robotics and Automation. IEEE (2014) (accepted)Google Scholar
  21. 21.
    Onal, C.D., Wood, R.J., Rus, D.: An origami-inspired approach to worm robots. IEEE/ASME Trans. Mechatron. 18(2), 430–438 (2013)CrossRefGoogle Scholar
  22. 22.
    Makerbot flexible filament. Accessed 26 May 2014

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ankur Mehta
    • 1
    Email author
  • Nicola Bezzo
    • 2
  • Peter Gebhard
    • 2
  • Byoungkwon An
    • 1
  • Vijay Kumar
    • 2
  • Insup Lee
    • 2
  • Daniela Rus
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations