Advertisement

Hydraulic Autonomous Soft Robotic Fish for 3D Swimming

  • Robert K. Katzschmann
  • Andrew D. Marchese
  • Daniela Rus
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 109)

Abstract

This work presents an autonomous soft-bodied robotic fish that is hydraulically actuated and capable of sustained swimming in three dimensions. The design of a fish-like soft body has been extended to deform under hydraulic instead of pneumatic power. Moreover, a new closed-circuit drive system that uses water as a transmission fluid is used to actuate the soft body. Circulation of water through internal body channels provides control over the fish’s caudal fin propulsion and yaw motion. A new fabrication technique for the soft body is described, which allows for arbitrary internal fluidic channels, enabling a wide-range of continuous body deformations. Furthermore, dynamic diving capabilities are introduced through pectoral fins as dive planes. These innovations enable prolonged fish-like locomotion in three dimensions.

Keywords

Soft robotics Robotic fish Hydraulic actuation Underwater locomotion Lost-wax silicone casting Soft actuator fabrication Fluidic elastomer actuator 

References

  1. 1.
    Albu-Schaffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimbock, T., Wolf, S., Hirzinger, G.: Soft robotics. IEEE Robot. Autom. Mag. 15(3), 20–30 (2008)CrossRefGoogle Scholar
  2. 2.
    Correll, N., Onal, C.D., Liang, H., Schoenfeld, E., Rus, D.: Soft autonomous materials - using active elasticity and embedded distributed computation. In: 12th International Symposium on Experimental Robotics (ISER), New Delhi, India (2010)Google Scholar
  3. 3.
    Onal, C.D., Chen, X., Whitesides, G.M., Rus, D.: Soft mobile robots with on-board chemical pressure generation. In: International Symposium on Robotics Research (ISRR) (2011)Google Scholar
  4. 4.
    Marchese, A.D., Onal, C.D., Rus, D.: Soft robot actuators using energy-efficient valves controlled by electropermanent magnets. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 756–761. IEEE (2011)Google Scholar
  5. 5.
    Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1(1) (2014)Google Scholar
  6. 6.
    Barrett, D.S.: Propulsive efficiency of Robotuna. Ph.D. thesis, Massachusetts Institute of Technology (1988)Google Scholar
  7. 7.
    Triantafyllou, M.S., Triantafyllou, G.S.: An efficient swimming machine. Sci. Am. 272(3), 64–71 (1995)CrossRefGoogle Scholar
  8. 8.
    Zhong, Y., Chong, C., Zhou, C., Seet, G.G., Low, K.: Performance predict model for a body and caudal fin (bcf) biomimetics fish robot. In: International Conference on Advanced Intelligent Mechatronics, IEEE/ASME, pp. 1230–1235 (2009)Google Scholar
  9. 9.
    Liu, J., Hu, H.: Biological inspiration: from carangiform fish to multi-joint robotic fish. J. Bionic Eng. 7(1), 35–48 (2010)CrossRefGoogle Scholar
  10. 10.
    Wen, L., Wang, T., Wu, G., Liang, J.: Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method. Bioinspir. Biomim. 7(3), 036012 (2012)CrossRefGoogle Scholar
  11. 11.
    Rossi, C., Colorado, J., Coral, W., Barrientos, A.: Bending continuous structures with smas: a novel robotic fish design. Bioinspir. Biomim. 6(4), 045005 (2011)CrossRefGoogle Scholar
  12. 12.
    Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117 (2008)CrossRefGoogle Scholar
  13. 13.
    Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., Dario, P.: Soft robot arm inspired by the octopus. Adv. Robot. 26(7), 709–727 (2012)CrossRefGoogle Scholar
  14. 14.
    El Daou, H., Salumae, T., Ristolainen, A., Toming, G., Listak, M., Kruusmaa, M.: A bio-mimetic design and control of a fish-like robot using compliant structures. In: 15th International Conference on Advanced Robotics (ICRA), pp. 563–568. IEEE (2011)Google Scholar
  15. 15.
    El Daou, H., Salumae, T., Toming, G., Kruusmaa, M.: A bio-inspired compliant robotic fish: Design and experiments. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5340–5345. IEEE (2012)Google Scholar
  16. 16.
    Valdivia y Alvarado, P., Youcef-Toumi, K.: Design of machines with compliant bodies for biomimetic locomotion in liquid environments. ASME J. Dyn. Syst. Meas. Control 128, 3–13 (2006)Google Scholar
  17. 17.
    Long, J.H., Koob, T., Schaefer, J., Summers, A., Bantilan, K., Grotmol, S., Porter, M.: Inspired by sharks: a biomimetic skeleton for the flapping, propulsive tail of an aquatic robot. Mar. Technol. Soc. J. 45(4), 119–129 (2011)CrossRefGoogle Scholar
  18. 18.
    Long, J.H., Krenitsky, N.M., Roberts, S.F., Hirokawa, J., de Leeuw, J., Porter, M.E.: Testing biomimetic structures in bioinspired robots: how vertebrae control the stiffness of the body and the behavior of fish-like swimmers. Integr. Comp. Biol. 51(1), 158–175 (2011)CrossRefGoogle Scholar
  19. 19.
    Shen, Q., Wang, T., Liang, J., Wen, L.: Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer-metal composite. Smart Mater. Struct. 22(7), 075035 (2013)CrossRefGoogle Scholar
  20. 20.
    Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: International Conference on Robotics and Automation, pp. 4975–4980. IEEE (2007)Google Scholar
  21. 21.
    Festo: Airacuda. http://www.festo.com/cms/en_corp/9761.htm (2006). Accessed 24 May 2014
  22. 22.
    Lauder, G.V., Flammang, B., Alben, S.: Passive robotic models of propulsion by the bodies and caudal fins of fish. Integr. Comp. Biol. 52(5), 576–587 (2012)CrossRefGoogle Scholar
  23. 23.
    Alben, S., Witt, C., Baker, T.V., Anderson, E., Lauder, G.V.: Dynamics of freely swimming flexible foils. Phys. Fluids (1994-present) 24(5) 051901 (2012)Google Scholar
  24. 24.
    Karassik, I.J., Messina, J.P., Cooper, P., Heald, C.C.: Pump Handbook, vol. 4. McGraw-Hill, New York (2008)Google Scholar
  25. 25.
    Mireles, J., Adame, A., Espalin, D., Medina, F., Winker, R., Hoppe, T., Zinniel, B., Wicker, R.: Analysis of sealing methods for fdm-fabricated parts. Technical Report, W.M. Keck Center for 3D Innovation. The University of Texas, El Paso (2011)Google Scholar
  26. 26.
    Drucker, E.G., Lauder, G.V.: Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J. Exp. Biol. 202(18), 2393–2412 (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Robert K. Katzschmann
    • 1
  • Andrew D. Marchese
    • 1
  • Daniela Rus
    • 1
  1. 1.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations