Experimental Robotics pp 211-227

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 109)

Initialization-Free Monocular Visual-Inertial State Estimation with Application to Autonomous MAVs

  • Shaojie Shen
  • Yash Mulgaonkar
  • Nathan Michael
  • Vijay Kumar
Chapter

Abstract

The quest to build smaller, more agile micro aerial vehicles has led the research community to address cameras and Inertial Measurement Units (IMUs) as the primary sensors for state estimation and autonomy. In this paper we present a monocular visual-inertial system (VINS) for an autonomous quadrotor which relies only on an inexpensive off-the-shelf camera and IMU, and describe a robust state estimator which allows the robot to execute trajectories at 2 m/s with roll and pitch angles of 20 degrees, with accelerations over 4 m/\(\text {s}^2\). The main innovations in the paper are an approach to estimate the vehicle motion without initialization and a method to determine scale and metric state information without encountering any degeneracy in real time.

References

  1. 1.
    Weiss, S., Achtelik, M.W., Lynen, S., Chli, M., Siegwart, R.: Real-time onboard visual-inertial state estimation and self-calibration of mavs in unknown environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 957–964. Saint Paul, MN, May 2012Google Scholar
  2. 2.
    Jones, E.S., Soatto, S.: Visual-inertial navigation, mapping and localization: a scalable real-time causal approach. Intl. J. Robot. Res. 30(4), 407–430 (2011)CrossRefGoogle Scholar
  3. 3.
    Mourikis, A.I., Roumeliotis, S.I.: A multi-state constraint Kalman filter for vision-aided inertial navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3565–3572. Roma, Italy, Apr 2007Google Scholar
  4. 4.
    Kelly, J., Sukhatme, G.S.: Visual-inertial sensor fusion: localization, mapping and sensor-to-sensor self-calibration. Intl. J. Robot. Res. 30(1), 56–79 (2011). JanuaryCrossRefGoogle Scholar
  5. 5.
    Kottas, D.G., Hesch, J.A., Bowman, S.L., Roumeliotis, S.I.: On the consistency of vision-aided inertial navigation. In: Proceedings of the International Symposium on Experimental Robotics, Quebec, Canada, June 2012Google Scholar
  6. 6.
    Li, M., Mourikis, A.: High-precision, consistent ekf-based visual-inertial odometry. Int. J. Robot. Res 32(6), 690–711 (2013)CrossRefGoogle Scholar
  7. 7.
    Kottas, D., Wu, K., Roumeliotis, S.: Detecting and dealing with hovering maneuvers in vision-aided inertial navigation systems. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, Nov 2013 (To appear)Google Scholar
  8. 8.
    Sibley, G., Matthies, L., Sukhatme, G.: Sliding window filter with application to planetary landing. J. Field Robot. 27(5), 587–608 (2010)CrossRefGoogle Scholar
  9. 9.
    Leutenegger, S., Furgale, P., Rabaud, V., Chli, M., Konolige, K., Siegwart, R.: Keyframe-based visual-inertial SLAM using nonlinear optimization. In: Proceedings of Robotics: Science and Systems, p. 0. Berlin, Germany June 2013Google Scholar
  10. 10.
    Indelman, V., Melim, A., Dellaert, F.: Incremental light bundle adjustment for robotics navigation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1952–1959. Tokyo, Japan, Nov 2013Google Scholar
  11. 11.
    Lange, S., Sunderhauf, N., Protzel, P.: Incremental smoothing vs. filtering for sensor fusion on an indoor UAV. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1773–1778. Karlsruhe, Germany, May 2013Google Scholar
  12. 12.
    Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’07), Nara, Japan, Nov 2007Google Scholar
  13. 13.
    Lupton, T., Sukkarieh, S.: Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions. IEEE Trans. Robot. 28(1), 61–76 (2012)CrossRefGoogle Scholar
  14. 14.
    Kneip, L., Weiss, S., Siegwart, R.: Deterministic initialization of metric state estimation filters for loosely-coupled monocular vision-inertial systems. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2235–2241. San Francisco, CA, Sept 2011Google Scholar
  15. 15.
    Dong-Si, T., Mourikis, A.I.: Estimator initialization in vision-aided inertial navigation with unknown camera-IMU calibration. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1064–1071. Vilamoura, Algarve, Portugal, Oct 2012Google Scholar
  16. 16.
    Martinelli, A.: Vision and imu data fusion: Closed-form solutions for attitude, speed, absolute scale, and bias determination. IEEE Trans. Robot. 28(1), 44–60 (2012)Google Scholar
  17. 17.
    Martinelli, A.: Closed-form solution of visual-inertial structure from motion. IEEE Trans. Robot. (2013)Google Scholar
  18. 18.
    Lippiello, V., Mebarki, R.: Closed-form solution for absolute scale velocity estimation using visual and inertial data with a sliding least-squares estimation. In: Proceedings of Mediterranean Conference on Control and Automation, pp. 1261–1266. Platanias-Chania, Crete, Greece, June 2013Google Scholar
  19. 19.
    Martinec, D., Pajdla, T.: Robust rotation and translation estimation in multiview reconstruction. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 1–8. Minneapolis, MN (2007)Google Scholar
  20. 20.
    Shen, S., Mulgaonkar, Y., Michael, N., Kumar, V.: Vision-based state estimation and trajectory control towards high-speed flight with a quadrotor. In: Proceedings of Robotics: Science and Systems. Berlin, Germany (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shaojie Shen
    • 1
  • Yash Mulgaonkar
    • 1
  • Nathan Michael
    • 2
  • Vijay Kumar
    • 1
  1. 1.GRASP LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations