Skip to main content

Relational Concept Analysis for Relational Data Exploration

  • Chapter
  • First Online:
Advances in Knowledge Discovery and Management

Part of the book series: Studies in Computational Intelligence ((SCI,volume 615))

Abstract

Relational Concept Analysis (RCA) is an extension to the Formal Concept Analysis (FCA) which is an unsupervised classification method producing concept lattices. In addition RCA considers relations between objects from different contexts and builds a set of connected lattices. This feature makes it more intuitive to extract knowledge from relational data and gives richer results. However, data with many relations imply scalability problems and numerous results that are difficult to exploit. We propose in this article a possible adaptation of RCA to explore relations in a guided way in order to increase the performance and the pertinence of the results. We also present an application of exploratory RCA to environmental data for extracting knowledge on water quality of watercourses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://engees-fresqueau.unistra.fr/presentation.php?lang=en.

  2. 2.

    The term taxon covers diverse terms used for the denomination of living beings such as species, genus or families.

  3. 3.

    http://www.sandre.eaufrance.fr.

  4. 4.

    Considering the size of the example, this rule is to be considered for illustrative purpose only.

  5. 5.

    http://dolques.free.fr/rcaexplore/.

References

  • Azmeh, Z., M. Huchard, A. Napoli, M.R. Hacene, and P. Valtchev. 2011. Querying relational concept lattices. In Proceedings of the 8th International Conference on Concept Lattices and their Applications (CLA’11), 377–392.

    Google Scholar 

  • Barbut, M., and B. Monjardet. 1970. Ordre et Classification: Algèbre et Combinatoire, vol. 2. Hachette.

    Google Scholar 

  • Bedel, O., S. Ferré, and O. Ridoux. 2008. Handling spatial relations in logical concept analysis to explore geographical data. In Formal Concept Analysis, vol. 4933, ed. R. Medina, and S. Obiedkov, 241–257, LNCS. Berlin: Springer.

    Google Scholar 

  • Berry, A., A. Gutierrez, M. Huchard, A. Napoli, and Sigayret, A. 2014. Hermes: a simple and efficient algorithm for building the aoc-poset of a binary relation. Annals of Mathematics and Artificial Intelligence.

    Google Scholar 

  • Bertaux, A., F. Le Ber, A. Braud, and Trémolières, M. 2009. Identifying ecological traits: a concrete fca-based approach. In 7th International Conference on Formal Concept Analysis, ICFCA 2009, Darmstadt, vol. 5548, eds. S. Ferré, and S. Rudolph, 224–236, LNAI. Springer.

    Google Scholar 

  • Braud, A., C. Nica, C. Grac, and F. Le Ber. 2011. A lattice-based query system for assessing the quality of hydro-ecosystems. In Proceedings of the 8th International Conference on Concept Lattices and Their Applications (CLA 2001), Nancy, eds. A. Napoli, and V. Vychodil, 265–277. INRIA Nancy-Grand-Est and LORIA.

    Google Scholar 

  • Carpineto, C., and G. Romano. 1995. Ulysses: a lattice-based multiple interaction strategy retrieval interface. In EWHCI, vol. 1015, Lecture Notes in Computer Science, eds. B. Blumenthal, J. Gornostaev, and C. Unger, 91–104. Springer.

    Google Scholar 

  • Carpineto, C., and G. Romano. 2004. Concept Data Analysis: Theory and Applications. Wiley.

    Google Scholar 

  • Collier, K.J., R.J. Ilcock, and A.S. Meredith. 1998. Influence of substrate type and physico-chemical conditions on macroinvertebrate faunas and biotic indices of some lowland Waikato, New Zealand, streams. New Zealand Journal of Marine and Freshwater Research 32(1): 1–19.

    Article  Google Scholar 

  • Dolques, X., M. Huchard, and C. Nebut. 2009. From transformation traces to transformation rules: assisting model driven engineering approach with formal concept analysis. In Supplementary Proceedings of ICCS’09, 15–29.

    Google Scholar 

  • Dolques, X., M. Huchard, C. Nebut, and P. Reitz. 2010. Fixing generalization defects in UML use case diagrams. In CLA’10: 7th International Conference on Concept Lattices and Their Applications, 247–258.

    Google Scholar 

  • Ducrou, J., B. Wormuth, and P.W. Eklund. 2005. Dynamic schema navigation using formal concept analysis. In DaWaK, vol. 3589, Lecture Notes in Computer Science, eds. A.M. Tjoa, and J. Trujillo, 398–407. Springer.

    Google Scholar 

  • Fabrègue, M., A. Braud, S. Bringay, F. Le Ber, and M. Teisseire. 2013. OrderSpan: mining closed partially ordered patterns. In The Twelfth International Symposium on Intelligent Data Analysis (IDA 2013), vol. 8207, 186–197, LNCS. London: Springer.

    Google Scholar 

  • Ferré, S. 2009. Camelis: a logical information system to organise and browse a collection of documents. International Journal of General Systems 38(4): 379–403.

    Article  MATH  Google Scholar 

  • Ferré, S. 2010. Conceptual navigation in RDF graphs with SPARQL-Like Queries. In ICFCA, vol. 5986, eds. L. Kwuida, and B. Sertkaya,193–208, LNCS. Springer.

    Google Scholar 

  • Ferré, S., and A. Hermann. 2011. Semantic search: reconciling expressive querying and exploratory search. In International Semantic Web Conference, vol. 7031, eds. L. Aroyo, and C. Welty, 177–192, LNCS Springer.

    Google Scholar 

  • Ganter, B., and S.O. Kuznetsov. 2001. Pattern structures and their projections. In Proceedings of the 9th International Conference on Conceptual Structures (ICCS 2001), 129–142.

    Google Scholar 

  • Ganter, B., and R. Wille. 1999. Formal Concept Analysis. Mathematical Foundations: Springer.

    Google Scholar 

  • Goethals, P.L., A.P. Dedecker, W. Gabriels, S. Lek, and N. Pauw. 2007. Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquatic Ecology 41(3): 491–508.

    Article  Google Scholar 

  • Hacene, M.R., M. Huchard, A. Napoli, and P. Valtchev. 2013. Relational concept analysis: mining concept lattices from multi-relational data. Annals of Mathematics and Artificial Intelligence 67(1): 81–108.

    Article  MATH  MathSciNet  Google Scholar 

  • Kocev, D., A. Naumoski, K. Mitreski, S. Krstić, and S. Džeroski. 2010. Learning habitat models for the diatom community in lake prespa. Ecological Modelling 221(2): 330–337.

    Article  Google Scholar 

  • Kötters, J. 2011. Object configuration browsing in relational databases. In ICFCA, vol. 6628, Lecture Notes in Computer Science, eds. P. Valtchev, and R. Jäschke, 151–166. Springer.

    Google Scholar 

  • Kuznetsov, S.O., and S.A. Obiedkov. 2002. Comparing performance of algorithms for generating concept lattices. Journal of Experimental and Theoretical Artificial Intelligence 14(2–3): 189–216.

    Article  MATH  Google Scholar 

  • Lachiche, N. 2010. Propositionalization. In Encyclopedia of Machine Learning, ed. C. Sammut, and G. Webb, 812–817. USA: Springer.

    Google Scholar 

  • Lalande, N., L. Berrahou, G. Molla, E. Serrano, F. Cernesson, C. Grac, A. Herrmann, F. Le Ber, M. Teisseire, and M. Trémolières. 2013. Feedbacks on data collection, data modeling and data integration of large datasets: application to Rhin-Meuse and Rhone-Mediterranean districts (France). In 8th Symposium for European Freshwater Sciences, Münster, Germany.

    Google Scholar 

  • Lalande, N., F. Cernesson, A. Decherf, and M.-G. Tournoud. 2014. Implementing the DPSIR framework to link water quality of rivers to land use: methodological issues and preliminary field test. International Journal of River Basin Management 1–17.

    Google Scholar 

  • Miralles, A., X. Dolques, M. Huchard, F. Le Ber, T. Libourel, C. Nebut, and A. Osman-Guédi. 2014. Exploration de la factorisation d’un modèle de classes sous contrôle des acteurs. In Inforsid 2014, Lyon, France.

    Google Scholar 

  • Saada, H., X. Dolques, M. Huchard, C. Nebut, and H.A. Sahraoui. 2012. Generation of operational transformation rules from examples of model transformations. In MoDELS, vol. 7590, Lecture Notes in Computer Science, France, eds. R.B. France, J. Kazmeier, R. Breu, and C. Atkinson, MoDELS, 546–561. Springer.

    Google Scholar 

  • Stumme, G., R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. 2002. Computing iceberg concept lattices with Titanic. Data and Knowledge Engineering 42(2): 189–222.

    Article  MATH  Google Scholar 

  • Valtchev, P., R. Missaoui, and R. Godin. 2004. Formal concept analysis for knowledge and data discovery: new challenges. In Proceedings of the 2nd International Conference on Formal Concept Analysis (ICFCA’04), 352–371.

    Google Scholar 

  • Vanderpoorten, A., J.-P. Klein, H. Stieperaere, and M. Trémolières. 1999. Variations of aquatic bryophyte assemblages in the Rhine Rift related to water quality. 1. The Alsatian Rhine floodplain. Journal of Bryology 21(1): 17–23.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank C. Grac (ENGEES-LIVE) in particular for her expertise on the provided data and the Fresqueau project ANR11_MONU14 which partially funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Dolques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dolques, X., Le Ber, F., Huchard, M., Nebut, C. (2016). Relational Concept Analysis for Relational Data Exploration. In: Guillet, F., Pinaud, B., Venturini, G., Zighed, D. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 615. Springer, Cham. https://doi.org/10.1007/978-3-319-23751-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23751-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23750-3

  • Online ISBN: 978-3-319-23751-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics