Advertisement

Free Piston Shock Tunnels HEG, HIEST, T4 and T5

  • Klaus HannemannEmail author
  • Katsuhiro Itoh
  • David J. Mee
  • Hans G. Hornung
Chapter
Part of the Shock Wave Science and Technology Reference Library book series (SHOCKWAVES, volume 9)

Abstract

At hypersonic flight the kinetic energy of the flow is large enough that high temperature effects such as vibrational excitation or dissociation of the fluid molecules occur. Due to the extremely high power requirement and the severe flow environment, the required test conditions can only be achieved in ground based impulse facilities. The most successful types of facility which are able to generate high enthalpy and high pressure hypersonic flows are shock tunnels and shock expansion tunnels. The principle of operation of these facilities is to store the energy over a long period of time, therefore reducing the necessary power requirement and subsequently releasing the stored energy rapidly. In free piston driven shock tunnels, the conventional driver of a shock tunnel is replaced by a free piston driver. This concept was proposed by Prof. R.J. Stalker in the 1960th and the facilities are referred to as Stalker tubes. In the present article, four major Stalker tubes, the High Enthalpy Shock Tunnel Göttingen, HEG, at the German Aerospace Center, the High Enthalpy Shock Tunnel, HIEST, at the Japan Aerospace Exploration Agency, Kakuda, T4 at The University of Queensland, Brisbane, Australia and T5 at the Graduate Aeronautical Laboratories, California Institute of Technology, United States are presented. In addition to facility overviews, selected research activities are discussed.

Keywords

Mach Number Shock Tube Incident Shock Wave Shock Tunnel Shock Train 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adam, P.H.: Enthalpy effects on hypervelocity boundary layers. PhD Thesis, California Institute of Technology (1997)Google Scholar
  2. 2.
    Adam, P.H, Hornung, H.G.: Enthalpy effects on hypervelocity boundary-layer transition: Ground test and flight test data. J. Spacecr. Rockets 34(5), 614–619 (1997)Google Scholar
  3. 3.
    Anderson, J.D.: Hypersonic and high-temperature gas dynamics, 2nd edn. American Institute of Aeronautics and Astronautics, Reston (2006)CrossRefGoogle Scholar
  4. 4.
    Barth, J.E., Wheatley, V., Smart, M.K.: Hypersonic turbulent boundary-layer fuel injection and combustion: skin-friction reduction mechanisms. AIAA J. 51(9), 2147–2157 (2013). doi: 10.2514/1.J052041, 2013
  5. 5.
    Bertin, J.J., Stetson, K.F., Bouslog, S.A., Caram, J.M.: Effect of isolated roughness elements on boundary-layer transition for shuttle orbiter. J. Spacec. Rocket 34, 4 (1997)Google Scholar
  6. 6.
    Böhrk, H., Wartemann, V., Eggers, T., Martinez Schramm, J., Wagner, A., Hannemann, K.: Shock tunnel testing of the transpiration-cooled heat shield experiment AKTiV, AIAA 2012-5935. In: Proceedings 18th AIAA/3AF International Space Planes and Hypersonic Systems And Technology Conference, Tours, France, 24–28 Sept 2012Google Scholar
  7. 7.
    Boyce, R.R., Takahashi, M., Stalker, R.J.: Mass spectrometric measurements of driver gas arrival in the T4 free-piston shock-tunnel. Shock Waves 14(5/6), 371–378 (2005). doi: 10.1007/s00193-005-0276-3 CrossRefGoogle Scholar
  8. 8.
    Brieschenk, S., Gehre, R., Wheatley, V., Boyce, R.: Fluorescence studies of jet mixing in a hypersonic flow. In: Proceedings of the 29th International Symposium on Shock Waves, 14–19 July 2013Google Scholar
  9. 9.
    Brieschenk, S., Lorrain, P., McIntyre, T.J., Boyce, R.R.: Chemiluminescence imaging in a radical-farming scramjet. In: Proceedings of the XXI International Symposium on Air Breathing Engines (ISABE 2013), pp. 1403–1408 (2013)Google Scholar
  10. 10.
    Capser, K.M., Beresh, S.J., Henfling, J.F., Spillers, R.W., Pruett, B., Schneider, S.P.: Hypersonic wind-tunnel measurements of boundary layer pressure fluctuations. AIAA 2009-4054, 39th AIAA Fluid Dynamics Conference, San Antonio, Texas, 22–25 June 2009Google Scholar
  11. 11.
    Cary Jr, A.M., Hefner, J.N.: Film-cooling effectiveness and skin friction in hypersonic turbulent flow. AIAA J. 10(9), 1188–1193 (1972)CrossRefGoogle Scholar
  12. 12.
    Chan, W.Y.K., Jacobs, P.A., Mee, D.J.: Suitability of the k-ω turbulence model for scramjet flowfield simulations. Int. J. Numer. Meth. Fluids 70(4), 493–514 (2012). doi: 10.1002/fld.2699 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chan, W.Y.K., Mee, D.J., Smart, M.K., Turner, J.C.: Effects of flow disturbances from cross-stream fuel injection on the drag reduction by boundary layer combustion. In: AIAA 2012-5889, presented at the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, France (2012), 24–28 Sept 2012Google Scholar
  14. 14.
    Chan, W.Y.K.: Effects of flow non-uniformities on the drag reduction by boundary layer combustion. PhD Thesis, The University of Queensland, Brisbane. Australia (2012)Google Scholar
  15. 15.
    Craddock, C.S.: Design of the axisymmetric HyShot nozzle for T4, Research Report 02/2000. Department of Mechanical Engineering, The University of Queensland (2000)Google Scholar
  16. 16.
    Davies, L., Wilson, J.L.: Influence of reflected shock and boundary-layer interaction on shock-tube flows. Phys. Fluids (Supplement I), l-37–1-43 (1969)Google Scholar
  17. 17.
    Detra, R.W., Kemp, N.H., Riddell, F.R.: Addendum to heat transfer to satellite vehicles reentering the atmosphere. Jet Propuls. 27(12), 1256–1257 (1957)Google Scholar
  18. 18.
    Doherty, L.J.: Experimental investigation of an airframe integrated 3-D scramjet at a Mach 10 flight condition. PhD Thesis, The University of Queensland (2014)Google Scholar
  19. 19.
    Doherty, L.J., Chan, W.Y.K., Zander, F., Jacobs, P.A., Gollan, R.J., Kirchhartz, R.M.: NENZFR: Non-Equilibrium Nozzle Flow, Reloaded, Division of Mechanical Engineering Report 2012/08, Brisbane. School of Mechanical and Mining Engineering, The University of Queensland, Australia (2012)Google Scholar
  20. 20.
    Dunn, M.G., Kang, S.W.: Theoretical and experimental studies of reentry plasmas. NASA CR-2232 (1973)Google Scholar
  21. 21.
    Edney, B.E.: Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. FFA Rep. 115 (1968)Google Scholar
  22. 22.
    Edney, B.E.: Effects of shock impingement on the heat transfer around blunt bodies. AIAA J. 6, 15–21 (1968)CrossRefGoogle Scholar
  23. 23.
    Eitelberg, G., McIntyre, T.J., Beck,W.H., Lacey, J.: High Enthalpy Shock Tunnel in Göttingen. AIAA 92-3955 (1992)Google Scholar
  24. 24.
    Fedorov, A., Kozlov, V., Shiplyuk, A., Maslov, A., Malmuth, N.: Stability of hypersonic boundary layer on porous wall with regular microstructure. AIAA J. 44(8), 1866–1871 (2006)Google Scholar
  25. 25.
    Fedorov, A.V., Malmuth, N.D., Rasheed, A., Hornung, H.G.: Stabilization of hypersonic boundary layers by porous coatings. AIAA J. 39(4), 605–610 (2001)CrossRefGoogle Scholar
  26. 26.
    Fujii, K.: Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition. J. Spacecr. Rocket 43(4), (2006)Google Scholar
  27. 27.
    Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of complex three-dimensional configurations employing the DLR-TAU-code. AIAA 1997-0167 (1997)Google Scholar
  28. 28.
    Germain, P., Hornung, H.G.: Transition on a slender cone in hypervelocity flow. Exp. Fluids 22, 183–190 (1997)CrossRefGoogle Scholar
  29. 29.
    Goyne, C.P., Stalker, R.J., Paull, A.: Transducer for direct measurement of skin friction in hypervelocity impulse facilities. AIAA J. 40(1), 42–49 (2002)CrossRefGoogle Scholar
  30. 30.
    Goyne, C.P., Stalker, R.J., Paull, A., Brescianini, C.P.: Hypervelocity skin-friction reduction by boundary-layer combustion of hydrogen. J. Spacecr. Rocket. 37(6), 740–746 (2000)CrossRefGoogle Scholar
  31. 31.
    Gupta, R.N., Yos, J.M., Thompson, R.A., Lee, K.P.: A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K, NASA Reference Publication, No. 1232 (1990)Google Scholar
  32. 32.
    Hannemann, K., Krek, R., Eitelberg, G., Latest Calibration Results of the HEG Contoured Nozzle. In: Sturtevant, B., Sheperd, J.E., Hornung, H.G. (eds.) Proceedings of the 20th International Symposium on Shock Waves, Pasadena, CA, USA, July 1995, pp. 1575–1580, World Scientific (1996)Google Scholar
  33. 33.
    Hannemann, K., Schnieder, M., Reimann, B., Martinez Schramm, J.: The influence and delay of driver gas contamination in HEG, AIAA 2000-2593, 21st AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Denver, CO, 19–22 June 2000Google Scholar
  34. 34.
    Hannemann, K., Martinez Schramm, J., Karl, S., Beck, W.H.: Cylinder Shock Layer Density Profiles Measured in High Enthalpy Flows in HEG, AIAA 2002-2913. 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, St. Louis, MO, June 24–28 2002Google Scholar
  35. 35.
    Hannemann, K.: High Enthalpy Flows in the HEG Shock Tunnel: Experiment and Numerical Rebuilding, AIAA 2003-0978, 41st AIAA Aerospace Sciences Meeting and Exhibit, 6-9 Jan. Reno, Nevada (2003)Google Scholar
  36. 36.
    Hannemann, K., Martinez Schramm, J.: High enthalpy, high pressure short duration testing of hypersonic flows. In: Tropea, C., Foss, J., Yarin, A. (eds.) Springer Handbook of Experimental Fluid Mechanics, pp. 1081–1125. Springer, Berlin (2007)Google Scholar
  37. 37.
    Hannemann, K., Martinez Schramm, J., Karl, S.: Recent extensions to the High Enthalpy Shock Tunnel Göttingen (HEG). In: Proceedings of the 2nd International ARA Days “Ten Years after ARD”, Arcachon, France, 21–23 Oct 2008Google Scholar
  38. 38.
    Hannemann, K., Karl, S., Martinez Schramm, J., Steelant, J.: Methodology of a Combined Ground Based Testing and Numerical Modelling Analysis of Supersonic Combustion Flow Paths, Shock Waves, Vol. 20, No. 5, pp. 353–366. Springer (2010)Google Scholar
  39. 39.
    Hollis, B.R., Prabhu, D.K.: Assessment of Laminar, Convective Aeroheating Prediction Uncertainties for Mars Entry Vehicles, AIAA 2011-3144. 42nd AIAA Thermophysics Conference. Honolulu, Hawaii, 27–30 June 2011Google Scholar
  40. 40.
    Hornung, H.G.: Performance Data of the New Free-Piston Shock Tunnel at GALCIT, AIAA 92-3943, AIAA 17th Aerospace Ground Testing Conference, Julv 6-8, Nashville, TN (1992)Google Scholar
  41. 41.
    Hornung, H.G.: Experimental hypervelocity flow simulation, needs, achievements and limitations. First Pacific International Conference on Aerospace Science and Technology, PICAST’1, Tainan, Taiwan (1993)Google Scholar
  42. 42.
    Hornung, H.G.: Hypersonic real-gas effects on transition. In: IUTAM Symposium on One Hundred Years of Boundary Layer Research, Solid mechanics and its applications, Vol. 129, pp. 335–344 (2006)Google Scholar
  43. 43.
    Itoh, K., Ueda, S., Komuro, T., Saito, K., Takahashi, M., Miyajima, H., Koga, K.: Design and Construction of HIEST (High Enthalpy Shock Tunnel). In: Proceedings of the International Conference on Fluid Engineering, Vol. 1. JSME Press, Tokyo, pp. 353–358 (1997)Google Scholar
  44. 44.
    Itoh, K., Ueda, S., Tanno, H., Komuro, T., Sato, K., Takahashi, M., Miyajima, H., Muramoto, H.: Improvement of free piston driver for high enthalpy shock tunnel. Shock Waves 8(4), 215–233 (1998)CrossRefGoogle Scholar
  45. 45.
    Itoh, K., Ueda, S., Tanno, H., Komuro, T., Sato, K.: Hypersonic aerothermodynamic and scramjet research using high enthalpy shock tunnel. Shock Waves 12, 93–98 (2002)CrossRefGoogle Scholar
  46. 46.
    Jacobs, P.A., Gollan, R.J., Potter, D.F.: The Eilmer3 Code: User Guide and Example Book 2014 Edition, Mechanical Engineering Report 2014/05. School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia (2014)Google Scholar
  47. 47.
    Jacobs, P.A., Gollan, R.J., Potter, D.F., Zander, F., Gildfind, D.E., Blyton, P., Chan, W.Y.K., Doherty, L.J.: Estimation of High-Enthalpy Flow Conditions for Simple Shock and Expansion Processes Using the ESTCj Program and Library, Division of Mechanical Engineering Report 2011/02, Brisbane. School of Mechanical and Mining Engineering, The University of Queensland, Australia (2011)Google Scholar
  48. 48.
    Jacobs, P.A., Morgan, R.G., Stalker, R.J., Mee, D.J.: Use of argon-helium driver-gas mixtures in the T4 shock tube. In: Brun, R., Dimitrescu, L.Z. (eds.) Shock Waves at Marseille. Springer, Berlin (1995)Google Scholar
  49. 49.
    Jacobs, P.A., Stalker, R.J.: Mach-4 and Mach-8 axisymmetrical nozzles for a high-enthalpy shock tunnel. Aeronaut. J. 95(949), 324–334 (1991)Google Scholar
  50. 50.
    Johnson, H.B., Seipp, T., Candler, G.V.: Numerical study of hypersonic reacting boundary layer transition on cones. Phys. Fluids 10, 2676–2685 (1998)CrossRefGoogle Scholar
  51. 51.
    Johnston, I.A., Weiland, M., Martinez Schramm, J., Hannemann, K., Longo, J.: Aerothermodynamics of the ARD: Postflight Numerics and Shock-Tunnel Experiments, AIAA 2002–0407, 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 14–17 Jan 2002Google Scholar
  52. 52.
    Karl, S.: Numerical Investigation of a Generic Scramjet Configuration. PhD Thesis, TU Dresden, Dresden, Germany (2011)Google Scholar
  53. 53.
    Karl, S., Martinez Schramm, J., Hannemann, K.: High enthalpy shock tunnel flow past a cylinder: a basis for CFD validation. New Results in Numerical and Experimental Fluid Mechanics IV, Vol. 87. Springer, Berlin (2004)Google Scholar
  54. 54.
    Kimmel, R.L., Adamczak, D., Gaitonde. D., Rougeux, A., Hayes, J.R.: HIFiRE-1 Boundary layer transition experiment design, AIAA 2007-534, 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, Reno, Nevada, 8–11 Jan 2007Google Scholar
  55. 55.
    Kirchhartz, R.M., Mee, D.J., Stalker, R.J.: Supersonic skin-friction drag with tangential wall slot fuel injection and combustion. AIAA J. 50(2), 313–324 (2012). doi: 10.2514/1.J05107 CrossRefGoogle Scholar
  56. 56.
    Kirchhartz, R.: Upstream wall layer effects on drag reduction with boundary layer combustion. PhD Thesis, The University of Queensland, Brisbane, Australia (2009)Google Scholar
  57. 57.
    Laurence, S., Wagner, A., Hannemann, K., Wartemann, V., Lüdeke, H., Tanno, H., Ito, K.: Time-resolved visualization of instability waves in a hypersonic boundary layer. AIAA J. 50(1), 243–246 (2012)CrossRefGoogle Scholar
  58. 58.
    Laurence, S.J., Wagner, Hannemann, K.: Schlieren-based techniques for investigating instability development and transition in a hypersonic boundary layer. In: Experiments in Fluids, Vol. 55, p. 1782. Springer, Berlin (2014). doi: 10.1007/s00348-014-1782-9
  59. 59.
    Laurence, S., Karl, S., Martinez Schramm, J., Hannemann, K.: Transient fluid-combustion phenomena in a model scramjet. J. Fluid Mech. 722, 85–120 (2013)Google Scholar
  60. 60.
    Lu, F.K., Marren, D.E. (eds.): Advanced Hypersonic Test Facilities. Progress in Astronautics and Aeronautics, Vol. 198. AIAA, USA (2002)Google Scholar
  61. 61.
    Lukasiewicz, J.: Experimental methods of hypersonics. Marcel Dekker Inc, New York (1973)Google Scholar
  62. 62.
    Mack, L.: Linear stability theory and the problem of supersonic boundary-layer transition. AIAA J 13(3), 278–289 (1975)CrossRefGoogle Scholar
  63. 63.
    Malik, M.R.: Prediction and control of transition in supersonic and hypersonic boundary layers. AIAA J. 27(11), 1487–1493 (1989)CrossRefGoogle Scholar
  64. 64.
    Malmuth, N., Fedorov, A., Shalaev, V., Cole, J., Khokhlov, A., Hites, M., Williams, D.: Problems in high speed flow prediction relevant to control. In: 2nd AIAA, Theoretical Fluid Mechanics Meeting, AIAA 98-2695 (1998). doi:  10.2514/6.1998-2695
  65. 65.
    Martinez Schramm, J.: Aerothermodynamische Untersuchung einer Wiedereintrittskonfiguration und ihrer Komponenten in einem impulsbetriebenen Hochenthalpie-Stoßkanal, Dissertation Universität Göttingen (2008)Google Scholar
  66. 66.
    Martinez Schramm, J., Sunami, T., Ito, K., Hannemann, K.: Experimental Investigation of Supersonic Combustion in the HIEST and HEG Free Piston Driven Shock Tunnels, AIAA 2010-7122, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN, 25–28 July 2010Google Scholar
  67. 67.
    Martinez Schramm, J., Barth, T., Wagner, A., Hannemann, K.: Post Flight Analysis of SHEFEX I: shock tunnel testing and related CFD analysis. In: Proceedings of the 7th European Symposium on Aerothermodynamics for Space Vehicles. Brugge, Belgium, , 9–12 May 2011Google Scholar
  68. 68.
    Mee, D.J.: Dynamic calibration of force balances for impulse hypersonic facilities. Shock Waves 12(6), 443–455 (2003). doi:  10.1007/s00193-003-0181-6
  69. 69.
    Mee, D.J.: Boundary-layer transition measurements in hypervelocity flows in a shock tunnel. AIAA J. 40(8), 1542–1548 (2002)CrossRefGoogle Scholar
  70. 70.
    Mee, D.J., Daniel, W.J.T., Simmons, J.M.: Three-component force balance for flows of millisecond duration. AIAA J. 34(3), 590–595 (1996). doi: 10.2514/3.13108 CrossRefGoogle Scholar
  71. 71.
    Mee, D.J.: Uncertainty analysis of conditions in the test section of the T4 shock tunnel, Research Report 4/93. Department of Mechanical Engineering, The University of Queensland (1993)Google Scholar
  72. 72.
    Merzkirch, W.: Flow Visualization. Academic Press, Waltham (1974)Google Scholar
  73. 73.
    Park, C.: On convergence of computation of chemically reacting flows. In: AIAA-85-0247, AIAA 23rd Aerospace Sciences Meeting, Reno, NV (1985)Google Scholar
  74. 74.
    Parziale, N.J., Shepherd, J.E., Hornung, H.G.: Differential interferometric measurement of instability in a hypervelocity boundary layer. AIAA J. 51(3) (2013)Google Scholar
  75. 75.
    Owen, R. Cain, T.: Reconstruction of the Hyshot-2 Flight from onboard sensors. In: Proceedings of the Fifth European Symposium on Aerothermodynamics for Space Vehicles, Cologne, Germany, 8–11 Nov 2004Google Scholar
  76. 76.
    Paull, A., Alesi, H., Anderson, S.: The HyShot flight program and how it was developed. AIAA 2002-5248, AIAA/AAAF 11th International Space Planes and Hypersonic Systems and Technologies Conference. Orleans, France (2002)Google Scholar
  77. 77.
    Paull, A., Stalker, R.J., Mee, D.J.: Experiments on supersonic combustion ramjet propulsion in a shock tunnel. J. Fluid Mech. 296, 159–183 (1995)CrossRefGoogle Scholar
  78. 78.
    Rasheed, A., Hornung, H.G., Fedorov, A.V., Malmuth, N.D.: Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface. AIAA 40(3), 481–489 (2002)CrossRefGoogle Scholar
  79. 79.
    Reimann B., Johnston I., Hannemann V.: The DLR TAU—code for high enthalpy flows, notes on num. Fluid Mech. Multidisc. Design 87, (2004)Google Scholar
  80. 80.
    Robinson, M.J., Mee, D.J., Paull, A.: Scramjet lift, thrust and pitching-moment characteristics measured in a shock tunnel. J. Propul. Power 22(1), 85–95 (2006). doi: 10.2514/1.15978 CrossRefGoogle Scholar
  81. 81.
    Robinson, M.: Simultaneous lift, moment and thrust measurements on a scramjet in hypervelocity flow. PhD Thesis, The University of Queensland, Australia (2003)Google Scholar
  82. 82.
    Rowan, S.A., Paull, A.: Performance of a scramjet combustor with combined normal and tangential fuel injection. J. Propul. Power 22(6), 1334–1338 (2006). doi: 10.2514/1.18744 CrossRefGoogle Scholar
  83. 83.
    Sanderson, S.R., Hornung, H.G., Sturtevant, B.: The influence of non-equilibrium dissociation on the flow produced by shock impingement on a blunt body. J. Fluid Mech. 516, 1–37 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  84. 84.
    Sanderson, J.R., Simmons, J.M.: Drag balance for hypervelocity impulse facilities. AIAA J. 29(12), 2185–2191 (1991). doi: 10.2514/3.10858 CrossRefGoogle Scholar
  85. 85.
    Schneider, S.P.: Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies. Prog. Aerosp. Sci. 40, 1–50 (2004)CrossRefGoogle Scholar
  86. 86.
    Schultz, D.L., Jones, T.V.: Heat-Transfer Measurements in Short-Duration Hypersonic Facilities. AGARDograph Report No. 165 (1973)Google Scholar
  87. 87.
    Skinner, K.A., Stalker, R.J.: Species measurements in a hypersonic, hydrogen-air, combustion wake. Combust. Flame 106(4), 478–486 (1996). doi: 10.1016/0010-2180(96)00018-1 CrossRefGoogle Scholar
  88. 88.
    Smart, M.K., Hass, N.E., Paull, A.: Flight data analysis of the HyShot 2 scramjet flight experiment. AIAA J. 44(10), 2366–2375 (2006)CrossRefGoogle Scholar
  89. 89.
    Smart, M.K.: Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition. J. Propul. Power 15(3), 408–416 (1999). doi: 10.2514/2.5459 MathSciNetCrossRefGoogle Scholar
  90. 90.
    Smith, A.L.: Multiple component force measurement in short duration test flows. PhD Thesis, The University of Queensland, Brisbane, Australia (1999)Google Scholar
  91. 91.
    Smith, C.E.: The starting Process in a Hypersonic Nozzle. J. Fluid Mech. 24(part 4), 625–640 (1966)Google Scholar
  92. 92.
    Stalker, R.J.: Modern development in hypersonic wind tunnels. Aeronaut. J. 21–39 (2006)Google Scholar
  93. 93.
    Stalker, R.J.: Control of hypersonic turbulent skin friction by boundary-layer combustion of hydrogen. J. Spacecr. Rockets 42(4), 577–587 (2005). doi: 10.2514/1.8699 CrossRefGoogle Scholar
  94. 94.
    Stalker, R.J., Paull, A.: Experiments on cruise propulsion with a hydrogen scramjet. Aeronaut. J. 102(1011), 37–43 (1998)Google Scholar
  95. 95.
    Stalker, R.J., Morgan, R.G.: The University of Queensland free piston shock tunnel T4—Initial operation and preliminary calibration. In: Proceedings of the 4th National Space Engineering Symposium, Adelaide, pp. 182-198. Barton, ACT: Institution of Engineers, Australia, 12–14 July 1988 (1988)Google Scholar
  96. 96.
    Stalker R.J.: Shock tunnel for real-gas hypersonics. AGARD CP 428 (1987)Google Scholar
  97. 97.
    Stalker, R.J.: A study of the free-piston shock tunnel. AIAA J. 5(12), 2160–2165 (1967)Google Scholar
  98. 98.
    Sudani, N., Hornung, H.G.: Gasdynamical detectors of driver gas contamination in a high-enthalpy shock tunnel. AIAA J. 36(3), 313–319 (1998)Google Scholar
  99. 99.
    Suraweera, M.V.: Reduction of skin friction drag in hypersonic flow by boundary layer combustion. PhD thesis, The University of Queensland. Brisbane. Australia (2006)Google Scholar
  100. 100.
    Suraweera, M., Mee, D.J., Stalker, R.J.: Skin friction reduction in hypersonic turbulent flow by boundary layer combustion. AIAA Paper 2005-613. Presented at the 43rd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 10–13 Jan 2005Google Scholar
  101. 101.
    Tanimizu, K., Mee, D.J., Stalker, R.J., Jacobs, P.A.: Drag force on quasi-axisymmetric scramjets at various flight Mach numbers: theory and experiment. Shock Waves 19(2), 83–93 (2009). doi: 10.1007/s00193-009-0194-x CrossRefGoogle Scholar
  102. 102.
    Tanimizu, K.: Nozzle optimization study and measurements for a quasi-axisymmetric scramjet model. PhD Thesis, The University of Queensland, Brisbane. Australia. August (2008)Google Scholar
  103. 103.
    Tanno, H., Sato, K.,Komuro, T., Itoh. K.: Free-flight Aerodynamic Tests of Reentry Vehicles in High-temperature Real-gas Flow. AIAA 2014-3109, 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Atlanta, Georgia, 16–20 June 2014Google Scholar
  104. 104.
    Tanno, H., Komuro, T., Ohnishi, N., Ishihara, T., Ogino, Y., Sawada, K.: Experimental study on heat flux augmentation in high-enthalpy shock tunnels. AIAA 2014-2548, 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Atlanta, Georgia, 16–20 June 2014Google Scholar
  105. 105.
    Tanno, H., Sato, K., Komuro, T., Itoh, K., Takahashi, M., Fujita, K., Laurence, S., Hannemann, K.: Free-flight force measurement technique in shock tunnel. AIAA 2012-1241, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, 9–12 Jan 2012Google Scholar
  106. 106.
    Tanno, H., Komuro, T., Sato, K., Itoh, K., Takahashi, M., Fulii, K.: Measurement of hypersonic high-enthalpy boundary layer transition on a 7º cone model. AIAA 2010-310, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 4–7 Jan 2010Google Scholar
  107. 107.
    Tanno, H., Komuro, T., Sato, K., Itoh, K., Takahashi, M.: Miniature data-logger for aerodynamic force measurement in impulsive facility, AIAA 2010-4204, 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Chicago, Illinois, 28 June–1 July (2010)Google Scholar
  108. 108.
    Tanno, H., Komuro, T., Sato, K., Itoh, K., Yamada, T., Sato, N., Nakano, E.: Heat flux measurement of Apollo capsule model in the free-piston shock tunnel HIEST, AIAA 2009-7304. 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, 19–22 Oct 2009Google Scholar
  109. 109.
    Tanno, H., Komuro, T., Sato, K., Itoh, K., Takahashi, M., Fujii, K.: Measurement of hypersonic boundary layer transition on cone models in the free-piston shock tunnel HIEST. AIAA 2009-781, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 5–8 Jan 2009Google Scholar
  110. 110.
    Tanno, H., Paull, A., Stalker, R.J.: Skin-friction measurements in a supersonic combustor with crossflow fuel injection. J. Propul. Power 17(6), 1333–1338 (2001). doi: 10.2514/2.5883 CrossRefGoogle Scholar
  111. 111.
    Turner, J., Hörschgen, M., Jung, W., Stamminger, A., Turner, P.: SHEFEX Hypersonic re-entry flight experiment; vehicle and subsystem design, flight performance and prospects. AIAA 2006-8115, 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference (2006)Google Scholar
  112. 112.
    Tuttle, S.L., Mee, D.J., Simmons, J.M.: Drag measurements at Mach 5 using a stress wave force balance. Exp. Fluids 19(5), 336–341 (1995). doi: 10.1007/BF00203418 CrossRefGoogle Scholar
  113. 113.
    van Driest, E.R.: Turbulent boundary layer in compressible fluids. J. Spacecr. Rockets 40(6), 1012–1028 (2003). doi: 10.2514/1.10862 CrossRefGoogle Scholar
  114. 114.
    van Driest, E.R.: The Problem of Aerodynamic Heating. Aeronaut. Eng. Rev. 15(10), 26–41 (1956)Google Scholar
  115. 115.
    Wagner, A., Kuhn, M., Hannemann, K.: Ultrasonic absorption characteristics of porous carbon-carbon ceramics with random microstructure for passive hypersonic boundary layer transition control. Exp. Fluids 55(6), 1–9 (2014). doi  10.1007/s00348-014-1750-4
  116. 116.
    Wagner A., Kuhn M., Martinez Schramm J., Hannemann K.: Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure. Exp. Fluids 54(10), 1–10 (2013). doi: 10.1007/s00348-013-1606-3
  117. 117.
    Weihs, H., Longo, J., Turner, J.: Key experiments within the SHEFEX II mission. In: IAC 2008, Glasgow, Scotland UK, IAC-08.D2.6.4 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Klaus Hannemann
    • 1
    Email author
  • Katsuhiro Itoh
    • 2
  • David J. Mee
    • 3
  • Hans G. Hornung
    • 4
  1. 1.Spacecraft DepartmentGerman Aerospace Center, DLR, Institute of Aerodynamics and Flow TechnologyGöttingenGermany
  2. 2.Japan Aerospace Exploration AgencyJAXA, Kakuda Space CenterKakuda MiyagiJapan
  3. 3.Centre for Hypersonics, School of Mechanical and Mining Engineering, BrisbaneThe University of QueenslandSaint LuciaAustralia
  4. 4.Graduate Aerospace LaboratoriesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations