Advertisement

microRNAs and Colorectal Cancer

  • Anna Lena Ress
  • Samantha Perakis
  • Martin PichlerEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 889)

Abstract

Colorectal cancer (CRC) is one of the most common types of human cancer with high cancer-related morbidity and mortality rates. The development and clinical validation of novel therapeutic avenues have improved the clinical outcome, but metastatic CRC still remains an incurable disease in most cases. The interest in discovering novel pathophysiological drivers in CRC is intensively ongoing and the search for novel biomarkers for early diagnosis, for patient’s stratification for prognostic purposes or for predicting treatment response are warranted. microRNAs are small RNA molecules that regulate the expression of larger messenger RNA species by different mechanisms with the final consequence to provide a fine tuning tool for global gene expression patterns. First discovered in worms, around 15 years ago it became clear that microRNAs are also existing in humans and that they are widely involved in human carcinogenesis. Within the last years, tremendous progress in the understanding of microRNAs and their role in CRC carcinogenesis has been developed. In this book chapter, several examples of previously identified microRNAs and how they influence colorectal carcinogenesis will be discussed. The information starting at the underlying molecular mechanisms towards clinical applications will be depicted and an overview what great potential these small molecules might carry in future colorectal cancer medicine, will be discussed.

Keywords

microRNAs Colorectal cancer Prognosis Carcinogenesis 

References

  1. 1.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.CrossRefPubMedGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  4. 4.
    Schmoll HJ, Van Cutsem E, Stein A, Valentini V, Glimelius B, Haustermans K, et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making. Ann Oncol. 2012;23:2479–516.CrossRefPubMedGoogle Scholar
  5. 5.
    Stiegelbauer V, Perakis S, Deutsch A, Ling H, Gerger A, Pichler M. MicroRNAs as novel predictive biomarkers and therapeutic targets in colorectal cancer. World J Gastroenterol. 2014;20:11727–35.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Linnekamp JF, Wang X, Medema JP, Vermeulen L. Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes. Cancer Res. 2015;75:245–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Ahmed S, Johnson K, Ahmed O, Iqbal N. Advances in the management of colorectal cancer: from biology to treatment. Int J Colorectal Dis. 2014;29:1031–42.CrossRefPubMedGoogle Scholar
  8. 8.
    Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Xuan Y, Yang H, Zhao L, Lau WB, Lau B, Ren N, et al. MicroRNAs in colorectal cancer: small molecules with big functions. Cancer Lett. 2014;360(2):89–105.CrossRefPubMedGoogle Scholar
  10. 10.
    Ress AL, Stiegelbauer V, Winter E, Schwarzenbacher D, Kiesslich T, Lax S, et al. MiR-96-5p influences cellular growth and is associated with poor survival in colorectal cancer patients. Mol Carcinog. 2014. doi: 10.1002/mc.22218.PubMedGoogle Scholar
  11. 11.
    Selcuklu SD, Donoghue MT, Spillane C. miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans. 2009;37:918–25.CrossRefPubMedGoogle Scholar
  12. 12.
    McGuire JJ. Anticancer antifolates: current status and future directions. Curr Pharm Des. 2003;9:2593–613.CrossRefPubMedGoogle Scholar
  13. 13.
    Schetter AJ, Okayama H, Harris CC. The role of microRNAs in colorectal cancer. Cancer J. 2012;18:244–52.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Baraniskin A, Birkenkamp-Demtroder K, Maghnouj A, Zollner H, Munding J, Klein-Scory S, et al. MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL. Carcinogenesis. 2012;33:732–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Bandres E, Bitarte N, Arias F, Agorreta J, Fortes P, Agirre X, et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res. 2009;15:2281–90.CrossRefPubMedGoogle Scholar
  16. 16.
    Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2010;31:350–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Karaayvaz M, Zhai H, Ju J. miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis. 2013;4:659.CrossRefGoogle Scholar
  18. 18.
    Liu L, Chen L, Xu Y, Li R, Du X. microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochem Biophys Res Commun. 2010;400:236–40.CrossRefPubMedGoogle Scholar
  19. 19.
    Nie J, Liu L, Zheng W, Chen L, Wu X, Xu Y, et al. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis. 2012;33:220–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Akao Y, Nakagawa Y, Hirata I, Iio A, Itoh T, Kojima K, et al. Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther. 2010;17:398–408.CrossRefPubMedGoogle Scholar
  21. 21.
    Tang JT, Wang JL, Du W, Hong J, Zhao SL, Wang YC, et al. MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis. 2011;32:1207–15.CrossRefPubMedGoogle Scholar
  22. 22.
    Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26:745–52.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nakano H, Miyazawa T, Kinoshita K, Yamada Y, Yoshida T. Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int J Cancer. 2010;127:1072–80.CrossRefPubMedGoogle Scholar
  24. 24.
    Woods K, Thomson JM, Hammond SM. Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem. 2007;282:2130–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Diosdado B, van de Wiel MA, Terhaar Sive Droste JS, Mongera S, Postma C, Meijerink WJ, et al. MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer. 2009;101:707–14.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chai H, Liu M, Tian R, Li X, Tang H. miR-20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines. Acta Biochim Biophys Sin. 2011;43:217–25.CrossRefPubMedGoogle Scholar
  27. 27.
    Muppala S, Mudduluru G, Leupold JH, Buergy D, Sleeman JP, Allgayer H. CD24 induces expression of the oncomir miR-21 via Src, and CD24 and Src are both post-transcriptionally downregulated by the tumor suppressor miR-34a. PLoS One. 2013;8, e59563.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Leupold JH, Yang HS, Colburn NH, Asangani I, Post S, Allgayer H. Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene. 2007;26:4550–62.CrossRefPubMedGoogle Scholar
  29. 29.
    He X, Dong Y, Wu CW, Zhao Z, Ng SS, Chan FK, et al. MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating BMI1 polycomb ring finger oncogene. Mol Med. 2012;18:1491–8.PubMedCentralGoogle Scholar
  30. 30.
    Li J, Du L, Yang Y, Wang C, Liu H, Wang L, et al. MiR-429 is an independent prognostic factor in colorectal cancer and exerts its anti-apoptotic function by targeting SOX2. Cancer Lett. 2013;329:84–90.CrossRefPubMedGoogle Scholar
  31. 31.
    Leal JA, Feliciano A, Lleonart ME. Stem cell microRNAs in senescence and immortalization: novel players in cancer therapy. Med Res Rev. 2013;33:112–38.CrossRefPubMedGoogle Scholar
  32. 32.
    Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. 2010;17:236–45.CrossRefPubMedGoogle Scholar
  33. 33.
    Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A. 2008;105:13421–6.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A. 2007;104:15472–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hur K. MicroRNAs: promising biomarkers for diagnosis and therapeutic targets in human colorectal cancer metastasis. BMB Rep. 2015;48(4):217–22.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Xu Q, Liu LZ, Qian X, Chen Q, Jiang Y, Li D, et al. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res. 2012;40:761–74.CrossRefPubMedGoogle Scholar
  37. 37.
    Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A. 2010;107:6334–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med. 2002;6:1–12.CrossRefPubMedGoogle Scholar
  39. 39.
    Sundaram P, Hultine S, Smith LM, Dews M, Fox JL, Biyashev D, et al. p53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers. Cancer Res. 2011;71:7490–501.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dews M, Fox JL, Hultine S, Sundaram P, Wang W, Liu YY, et al. The myc-miR-17 ~ 92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Res. 2010;70:8233–46.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Melo SA, Kalluri R. Angiogenesis is controlled by miR-27b associated with endothelial tip cells. Blood. 2012;119:2439–40.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15:261–71.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cottonham CL, Kaneko S, Xu L. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem. 2010;285:35293–302.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ji S, Ye G, Zhang J, Wang L, Wang T, Wang Z, et al. miR-574-5p negatively regulates Qki6/7 to impact beta-catenin/Wnt signalling and the development of colorectal cancer. Gut. 2013;62:716–26.CrossRefPubMedGoogle Scholar
  46. 46.
    Davalos V, Moutinho C, Villanueva A, Boque R, Silva P, Carneiro F, et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene. 2012;31:2062–74.CrossRefPubMedGoogle Scholar
  47. 47.
    Pichler M, Ress AL, Winter E, Stiegelbauer V, Karbiener M, Schwarzenbacher D, et al. MiR-200a regulates epithelial to mesenchymal transition-related gene expression and determines prognosis in colorectal cancer patients. Br J Cancer. 2014;110:1614–21.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chen ML, Liang LS, Wang XK. miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1. Clin Exp Metastasis. 2012;29:457–69.CrossRefPubMedGoogle Scholar
  49. 49.
    Lee CG, McCarthy S, Gruidl M, Timme C, Yeatman TJ. MicroRNA-147 induces a mesenchymal-to-epithelial transition (MET) and reverses EGFR inhibitor resistance. PLoS One. 2014;9, e84597.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chen HY, Lin YM, Chung HC, Lang YD, Lin CJ, Huang J, et al. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res. 2012;72:3631–41.CrossRefPubMedGoogle Scholar
  51. 51.
    Lu MH, Huang CC, Pan MR, Chen HH, Hung WC. Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res. 2012;18:6416–25.CrossRefPubMedGoogle Scholar
  52. 52.
    Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 2010;70:378–87.CrossRefPubMedGoogle Scholar
  53. 53.
    Muhammad S, Kaur K, Huang R, Zhang Q, Kaur P, Yazdani HO, et al. MicroRNAs in colorectal cancer: role in metastasis and clinical perspectives. World J Gastroenterol. 2014;20:17011–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhou JJ, Zheng S, Sun LF, Zheng L. MicroRNA regulation network in colorectal cancer metastasis. World J Biol Chem. 2014;5:301–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Calin GA, Croce CM. MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene. 2006;25:6202–10.CrossRefPubMedGoogle Scholar
  57. 57.
    Calin GA, Croce CM. Chromosomal rearrangements and microRNAs: a new cancer link with clinical implications. J Clin Invest. 2007;117:2059–66.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1:882–91.PubMedGoogle Scholar
  59. 59.
    Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Vincent K, Pichler M, Lee GW, Ling H. MicroRNAs, genomic instability and cancer. Int J Mol Sci. 2014;15:14475–91.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Palesty JA, Dudrick SJ. What we have learned about cachexia in gastrointestinal cancer. Digestive Dis. 2003;21:198–213.CrossRefGoogle Scholar
  62. 62.
    Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.CrossRefPubMedGoogle Scholar
  63. 63.
    Chen B, Liu Y, Jin X, Lu W, Liu J, Xia Z, et al. MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells. BMC Cancer. 2014;14:443.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lebiedzinska-Arciszewska M, Oparka M, Vega-Naredo I, Karkucinska-Wieckowska A, Pinton P, Duszynski J, et al. The interplay between p66Shc, reactive oxygen species and cancer cell metabolism. Eur J Clin Invest. 2015;45 Suppl 1:25–31.CrossRefPubMedGoogle Scholar
  65. 65.
    Bernstein CN, Blanchard JF, Kliewer E, Wajda A. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer. 2001;91:854–62.CrossRefPubMedGoogle Scholar
  66. 66.
    Elfstrom P, Granath F, Ye W, Ludvigsson JF. Low risk of gastrointestinal cancer among patients with celiac disease, inflammation, or latent celiac disease. Clin Gastroenterol Hepatol. 2012;10:30–6.CrossRefPubMedGoogle Scholar
  67. 67.
    Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139:693–706.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Tili E, Croce CM, Michaille JJ. miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol. 2009;28:264–84.CrossRefPubMedGoogle Scholar
  69. 69.
    Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316:608–11.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39:493–506.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Olaru AV, Selaru FM, Mori Y, Vazquez C, David S, Paun B, et al. Dynamic changes in the expression of MicroRNA-31 during inflammatory bowel disease-associated neoplastic transformation. Inflamm Bowel Dis. 2011;17:221–31.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Chiba T, Marusawa H, Ushijima T. Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology. 2012;143:550–63.CrossRefPubMedGoogle Scholar
  73. 73.
    Duffy MJ, van Dalen A, Haglund C, Hansson L, Holinski-Feder E, Klapdor R, et al. Tumour markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines for clinical use. Eur J Cancer. 2007;43:1348–60.CrossRefPubMedGoogle Scholar
  74. 74.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ajit SK. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors. 2012;12:3359–69.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81.CrossRefPubMedGoogle Scholar
  77. 77.
    Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010;127:118–26.CrossRefPubMedGoogle Scholar
  78. 78.
    Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One. 2014;9, e92921.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Toiyama Y, Hur K, Tanaka K, Inoue Y, Kusunoki M, Boland CR, et al. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg. 2014;259:735–43.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wang LG, Gu J. Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol. 2012;36:e61–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Wang J, Huang SK, Zhao M, Yang M, Zhong JL, Gu YY, et al. Identification of a circulating microRNA signature for colorectal cancer detection. PLoS One. 2014;9, e87451.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, et al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One. 2011;6, e17745.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Brase JC, Wuttig D, Kuner R, Sultmann H. Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer. 2010;9:306.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kamimae S, Yamamoto E, Yamano HO, Nojima M, Suzuki H, Ashida M, et al. Epigenetic alteration of DNA in mucosal wash fluid predicts invasiveness of colorectal tumors. Cancer Prev Res (Phila). 2011;4:674–83.CrossRefGoogle Scholar
  85. 85.
    Burch JA, Soares-Weiser K, St John DJ, Duffy S, Smith S, Kleijnen J, et al. Diagnostic accuracy of faecal occult blood tests used in screening for colorectal cancer: a systematic review. J Med Screen. 2007;14:132–7.CrossRefPubMedGoogle Scholar
  86. 86.
    Yamazaki N, Koga Y, Yamamoto S, Kakugawa Y, Otake Y, Hayashi R, et al. Application of the fecal microRNA test to the residuum from the fecal occult blood test. Jpn J Clin Oncol. 2013;43:726–33.CrossRefPubMedGoogle Scholar
  87. 87.
    Li JM, Zhao RH, Li ST, Xie CX, Jiang HH, Ding WJ, et al. Down-regulation of fecal miR-143 and miR-145 as potential markers for colorectal cancer. Saudi Med J. 2012;33:24–9.PubMedGoogle Scholar
  88. 88.
    Wu XD, Song YC, Cao PL, Zhang H, Guo Q, Yan R, et al. Detection of miR-34a and miR-34b/c in stool sample as potential screening biomarkers for noninvasive diagnosis of colorectal cancer. Med Oncol. 2014;31:894.CrossRefPubMedGoogle Scholar
  89. 89.
    Kalimutho M, Del Vecchio BG, Di Cecilia S, Sileri P, Cretella M, Pallone F, et al. Differential expression of miR-144* as a novel fecal-based diagnostic marker for colorectal cancer. J Gastroenterol. 2011;46:1391–402.CrossRefPubMedGoogle Scholar
  90. 90.
    Wu CW, Ng SS, Dong YJ, Ng SC, Leung WW, Lee CW, et al. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut. 2012;61:739–45.CrossRefPubMedGoogle Scholar
  91. 91.
    Ghanbari R, Mosakhani N, Asadi J, Nouraee N, Mowla SJ, Poustchi H, et al. Decreased expression of fecal miR-4478 and miR-1295b-3p in early-stage colorectal cancer. Cancer Biomark. 2014;15(2):189–95.Google Scholar
  92. 92.
    Yau TO, Wu CW, Dong Y, Tang CM, Ng SS, Chan FK, et al. microRNA-221 and microRNA-18a identification in stool as potential biomarkers for the non-invasive diagnosis of colorectal carcinoma. Br J Cancer. 2014;111:1765–71.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Wu CW, Ng SC, Dong Y, Tian L, Ng SS, Leung WW, et al. Identification of microRNA-135b in stool as a potential noninvasive biomarker for colorectal cancer and adenoma. Clin Cancer Res. 2014;20:2994–3002.CrossRefPubMedGoogle Scholar
  94. 94.
    Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR, et al. Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev. 2010;19:1766–74.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Menendez P, Villarejo P, Padilla D, Menendez JM, Montes JA. Diagnostic and prognostic significance of serum microRNAs in colorectal cancer. J Surg Oncol. 2013;107:217–20.CrossRefPubMedGoogle Scholar
  96. 96.
    Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327:198–201.CrossRefPubMedGoogle Scholar
  97. 97.
    Zhang J, Zhang K, Bi M, Jiao X, Zhang D, Dong Q. Circulating microRNA expressions in colorectal cancer as predictors of response to chemotherapy. Anticancer Drugs. 2014;25:346–52.CrossRefPubMedGoogle Scholar
  98. 98.
    Svoboda M, Sana J, Fabian P, Kocakova I, Gombosova J, Nekvindova J, et al. MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat Oncol. 2012;7:195.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Nishida N, Yamashita S, Mimori K, Sudo T, Tanaka F, Shibata K, et al. MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann Surg Oncol. 2012;19:3065–71.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anna Lena Ress
    • 1
  • Samantha Perakis
    • 1
  • Martin Pichler
    • 2
    Email author
  1. 1.Division of OncologyMedical University of GrazGrazAustria
  2. 2.Department of Experimental TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations