Advertisement

Closed-Loop Deep Brain Stimulation for Parkinson’s Disease

  • R. Eitan
  • H. Bergman
  • Z. IsraelEmail author
Chapter

Abstract

  • Optimal outcomes of deep brain stimulation (DBS) surgery are often an elusive goal.

  • Constant “one-program” stimulation does not reflect the reality of changing clinical symptoms.

  • Closed-loop technology might provide a solution.

  • Closed-loop design will likely integrate multi-sourced sensing data, computed using information from a population database and individual hierarchical paradigms to continuously titrate parameters of stimulation.

  • Proof of principle already exists for the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model and in human Parkinson’s disease (PD) patients.

  • Many elements of such a feedback system have already been developed.

Keywords

Closed loop Deep brain stimulation 

References

  1. 1.
    Modolo J, et al. Using “smart stimulators” to treat Parkinson’s disease: re-engineering neurostimulation devices. Front Comput Neurosci. 2012;6:69.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Little S, Brown P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Ann N Y Acad Sci. 2012;1265:9–24.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hebb AO, et al. Creating the feedback loop: closed-loop neurostimulation. Neurosurg Clin N Am. 2014;25(1):187–204.PubMedCrossRefGoogle Scholar
  4. 4.
    Priori A. Technology for deep brain stimulation at a gallop. Mov Disord. 2015;30(9):1206–12.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Beudel M, Brown P. Adaptive deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord. 2016;22(Suppl 1):S123–6.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bergey GK, et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology. 2015;84(8):810–7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Iskhakova L, Bergman H. Computational physiology of the basal ganglia, movement disorders and their therapy. In: Falup-Pecurariu C, et al., editors. Movement disorders curricula. Wien: Springer; 2017.Google Scholar
  8. 8.
    Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275(5306):1593–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Meidahl AC, et al. Adaptive deep brain stimulation for movement disorders: the long road to clinical therapy. Mov Disord. 2017;32(6):810–9.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Khanna P, Carmena JM. Neural oscillations: beta band activity across motor networks. Curr Opin Neurobiol. 2015;32:60–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Wilson CJ. Oscillators and oscillations in the basal ganglia. Neuroscientist. 2015;21(5):530–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cagnan H, Duff EP, Brown P. The relative phases of basal ganglia activities dynamically shape effective connectivity in Parkinson’s disease. Brain. 2015;138(Pt 6):1667–78.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Heinrichs-Graham E, Wilson TW. Is an absolute level of cortical beta suppression required for proper movement? Magnetoencephalographic evidence from healthy aging. NeuroImage. 2016;134:514–21.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Muthukumaraswamy SD. Functional properties of human primary motor cortex gamma oscillations. J Neurophysiol. 2010;104(5):2873–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Bergman H, et al. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol. 1994;72(2):507–20.CrossRefGoogle Scholar
  16. 16.
    Deffains M, et al. Higher neuronal discharge rate in the motor area of the subthalamic nucleus of Parkinsonian patients. J Neurophysiol. 2014;112(6):1409–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Moshel S, et al. Subthalamic nucleus long-range synchronization-an independent hallmark of human Parkinson’s disease. Front Syst Neurosci. 2013;7:79.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Zaidel A, et al. Subthalamic span of beta oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain. 2010;133(Pt 7):2007–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Zaidel A, et al. Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a hidden Markov model. Mov Disord. 2009;24(12):1785–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Moran A, et al. Two types of neuronal oscillations in the subthalamic nucleus of Parkinson’s disease patients. Mov Disord. 2008;23(1):S118.CrossRefGoogle Scholar
  21. 21.
    Moran A, et al. Real-time refinement of subthalamic nucleus targeting using Bayesian decision-making on the root mean square measure. Mov Disord. 2006;21(9):1425–31.PubMedCrossRefGoogle Scholar
  22. 22.
    Eitan R, et al. Asymmetric right/left encoding of emotions in the human subthalamic nucleus. Front Syst Neurosci. 2013;7:69.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Valsky D, et al. Stop! Border ahead: automatic detection of subthalamic exit during deep brain stimulation surgery. Mov Disord. 2017;32(1):70–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Canessa A, et al. Striatal dopaminergic innervation regulates subthalamic Beta-oscillations and cortical-subcortical coupling during movements: preliminary evidence in subjects with Parkinson’s disease. Front Hum Neurosci. 2016;10:611.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Eusebio A, et al. Deep brain stimulation can suppress pathological synchronisation in Parkinsonian patients. J Neurol Neurosurg Psychiatry. 2011;82(5):569–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Kuhn AA, et al. Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol. 2009;215(2):380–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Neumann WJ, et al. Subthalamic synchronized oscillatory activity correlates with motor impairment in patients with Parkinson’s disease. Mov Disord. 2016;31(11):1748–51.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Little S, et al. Beta band stability over time correlates with Parkinsonian rigidity and bradykinesia. Exp Neurol. 2012;236(2):383–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kuhn AA, et al. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci. 2006;23(7):1956–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Little S, Brown P. Closed-loop programming: human perspective. In: Vitek J, editor. Deep brain stimulation: technology and applications. London: Future Medicine; 2014. p. 79–90.Google Scholar
  31. 31.
    Deffains M, Iskhakova L, Katabi S, Israel Z, Bergman H. Longer β oscillatory episodes reliably identify pathological subthalamic activity in Parkinsonism. Mov Disord. 2018.Google Scholar
  32. 32.
    Cagnan H, et al. Stimulating at the right time: phase-specific deep brain stimulation. Brain. 2016;140(1):132–45.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Tinkhauser G, et al. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain. 2017;140(4):1053–67.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Little S, et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016;87(7):717–21.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Little S, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013;74(3):449–57.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Swann NC, et al. Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson's disease. J Neurosci. 2016;36(24):6445–58.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lenz FA, et al. Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic “tremor cells” with the 3-6 Hz component of Parkinsonian tremor. J Neurosci. 1988;8(3):754–64.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Buzsaki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13(6):407–20.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Michmizos KP, Sakas D, Nikita KS. Prediction of the timing and the rhythm of the Parkinsonian subthalamic nucleus neural spikes using the local field potentials. IEEE Trans Inf Technol Biomed. 2012;16(2):190–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Kuhn AA, et al. The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Exp Neurol. 2005;194(1):212–20.CrossRefGoogle Scholar
  41. 41.
    Weinberger M, et al. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol. 2006;96(6):3248–56.PubMedCrossRefGoogle Scholar
  42. 42.
    Winestone JS, et al. The use of macroelectrodes in recording cellular spiking activity. J Neurosci Methods. 2012;206(1):34–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Marmor O, et al. Local vs. volume conductance activity of field potentials in the human subthalamic nucleus. J Neurophysiol. 2017;  https://doi.org/10.1152/jn.00756.2016.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Giannicola G, et al. Subthalamic local field potentials after seven-year deep brain stimulation in Parkinson’s disease. Exp Neurol. 2012;237(2):312–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Priori A, et al. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol. 2013;245:77–86.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Afshar P, et al. A translational platform for prototyping closed-loop neuromodulation systems. Front Neural Circuits. 2012;6:117.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Rasche D, Tronnier VM. Clinical significance of invasive motor cortex stimulation for trigeminal facial neuropathic pain syndromes. Neurosurgery. 2016;79(5):655–66.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Panov F, et al. Intraoperative electrocorticography for physiological research in movement disorders: principles and experience in 200 cases. J Neurosurg. 2016;126(1):122–31.Google Scholar
  49. 49.
    Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12(10):366–75.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Cilia R, et al. Extradural motor cortex stimulation in Parkinson’s disease. Mov Disord. 2007;22(1):111–4.PubMedCrossRefGoogle Scholar
  51. 51.
    De Rose M, et al. Motor cortex stimulation in Parkinson’s disease. Neurol Res Int. 2012;2012:502096.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Lefaucheur JP. Treatment of Parkinson’s disease by cortical stimulation. Expert Rev Neurother. 2009;9(12):1755–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Munno D, et al. Neuropsychologic assessment of patients with advanced Parkinson disease submitted to extradural motor cortex stimulation. Cogn Behav Neurol. 2007;20(1):1–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Zwartjes DG, et al. Motor cortex stimulation for Parkinson’s disease: a modelling study. J Neural Eng. 2012;9(5):056005.PubMedCrossRefGoogle Scholar
  55. 55.
    Bentivoglio AR, et al. Unilateral extradural motor cortex stimulation is safe and improves Parkinson disease at 1 year. Neurosurgery. 2012;71(4):815–25.PubMedCrossRefGoogle Scholar
  56. 56.
    Moro E, et al. Unilateral subdural motor cortex stimulation improves essential tremor but not Parkinson’s disease. Brain. 2011;134(Pt 7):2096–105.PubMedCrossRefGoogle Scholar
  57. 57.
    Kern K. et al. Detecting a cortical fingerprint of Parkinson’s disease for closed-loop neuromodulation. Front Neurosci. 2016;10(110).Google Scholar
  58. 58.
    Boakye M. Implications of neuroplasticity for neurosurgeons. Surg Neurol. 2009;71(1):5–10.PubMedCrossRefGoogle Scholar
  59. 59.
    Rosin B, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72(2):370–84.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Boraud T. Closed-loop stimulation: the future of surgical therapy of brain disorders? Mov Disord. 2012;27(2):200.PubMedCrossRefGoogle Scholar
  61. 61.
    Ryapolova-Webb E, et al. Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate. J Neural Eng. 2014;11(1):016009.PubMedCrossRefGoogle Scholar
  62. 62.
    Khanna P, et al. Neurofeedback control in Parkinsonian patients using electrocortigraphy signals accessed wirelessly with a chronic, fully implanted device. IEEE Trans Neural Syst Rehabil Eng. 2016;25(10):1715–24.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Little S, et al. Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry. 2016;87(12):1388–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Rosa M, et al. Adaptive deep brain stimulation in a freely moving Parkinsonian patient. Mov Disord. 2015;30(7):1003–5.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Rosa M, et al. Adaptive deep brain stimulation controls levodopa-induced side effects in Parkinsonian patients. Mov Disord. 2017;32:628.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Campbell GA, Crawford IL. A gated electronic switch for stimulation and recording with a single electrode. Brain Res Bull. 1980;5(4):485–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Ferrer AZ, Fernández-Guardiola A, Solís H. Electronic circuit breaker for recording and stimulation from same electrode. Electroencephalogr Clin Neurophysiol. 1978;45(2):299–301.PubMedCrossRefGoogle Scholar
  68. 68.
    Hatzopoulos A, Theophilidis G. A simple electronic unit allowing extracellular recording and stimulation through the same wire hook or suction electrode. J Neurosci Methods. 1984;11(3):169–72.PubMedCrossRefGoogle Scholar
  69. 69.
    Rossi L, et al. An electronic device for artefact suppression in human local field potential recordings during deep brain stimulation. J Neural Eng. 2007;4(2):96–106.PubMedCrossRefGoogle Scholar
  70. 70.
    Stanslaski S, et al. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans Neural Syst Rehabil Eng. 2012;20(4):410–21.PubMedCrossRefGoogle Scholar
  71. 71.
    Al-ani T, et al. Automatic removal of high-amplitude stimulus artefact from neuronal signal recorded in the subthalamic nucleus. J Neurosci Methods. 2011;198(1):135–46.PubMedCrossRefGoogle Scholar
  72. 72.
    Harding GW. A method for eliminating the stimulus artifact from digital recordings of the direct cortical response. Comput Biomed Res. 1991;24(2):183–95.PubMedCrossRefGoogle Scholar
  73. 73.
    Williams NR, Foote KD, Okun MS. STN vs. GPi deep brain stimulation: translating the rematch into clinical practice. Mov Disord Clin Pract. 2014;1(1):24–35.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Odekerken VJ, et al. GPi vs STN deep brain stimulation for Parkinson disease: three-year follow-up. Neurology. 2016;86(8):755–61.PubMedCrossRefGoogle Scholar
  75. 75.
    Odekerken VJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12(1):37–44.CrossRefGoogle Scholar
  76. 76.
    Weaver FM, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012;79(1):55–65.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Okun MS, Foote KD. Subthalamic nucleus vs globus pallidus interna deep brain stimulation, the rematch: will pallidal deep brain stimulation make a triumphant return? Arch Neurol. 2005;62(4):533–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Arkadir D, et al. In quest of the oscillator(s) in tremor: are we getting closer? Brain. 2014;137(Pt 12):3102–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Lee RG, Stein RB. Resetting of tremor by mechanical perturbations: a comparison of essential tremor and Parkinsonian tremor. Ann Neurol. 1981;10(6):523–31.PubMedCrossRefGoogle Scholar
  80. 80.
    Coenen VA, et al. One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson’s disease. Acta Neurochir. 2016;158(4):773–81.PubMedCrossRefGoogle Scholar
  81. 81.
    Johnson LA, et al. Closed-loop deep brain stimulation effects on Parkinsonian motor symptoms in a non-human primate – is Beta enough? Brain Stimul. 2016;9(6):892–6.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Meissner W, et al. Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain. 2005;128(Pt 10):2372–82.PubMedCrossRefGoogle Scholar
  83. 83.
    Tass PA. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybern. 2003;89(2):81–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Tass PA. Phase resetting in medicine and biology: stochastic modelling and data analysis. Berlin: Springer; 1999.CrossRefGoogle Scholar
  85. 85.
    Tass PA, et al. Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Ann Neurol. 2012;72(5):816–20.PubMedCrossRefGoogle Scholar
  86. 86.
    Wang J, et al. Coordinated reset deep brain stimulation of subthalamic nucleus produces long-lasting, dose-dependent motor improvements in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine non-human primate model of parkinsonism. Brain Stimul. 2016;9(4):609–17.PubMedCrossRefGoogle Scholar
  87. 87.
    Adamchic I, et al. Coordinated reset neuromodulation for Parkinson’s disease: proof-of-concept study. Mov Disord. 2014;29(13):1679–84.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Montaseri G, et al. Synchrony suppression in ensembles of coupled oscillators via adaptive vanishing feedback. Chaos. 2013;23(3):033122.PubMedCrossRefGoogle Scholar
  89. 89.
    Popovych OV, et al. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation. PLoS One. 2017;12(3):e0173363.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Popovych OV, Lysyansky B, Tass PA. Closed-loop deep brain stimulation by pulsatile delayed feedback with increased gap between pulse phases. Sci Rep. 2017;7(1):1033.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Brocker DT, et al. Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Exp Neurol. 2013;239:60–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Brocker DT, et al. Optimized temporal pattern of brain stimulation designed by computational evolution. Sci Transl Med. 2017;9(371).PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Shimamoto SA, et al. Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in Parkinson's disease. J Neurosci. 2013;33(17):7220–33.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    de Hemptinne C, et al. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A. 2013;110(12):4780–5.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    de Hemptinne C, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci. 2015;18(5):779–86.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Gunduz A, et al. Proceedings of the second annual deep brain stimulation think tank: what’s in the pipeline. Int J Neurosci. 2015;125(7):475–85.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Swann NC, et al. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson’s disease. J Neurosurg. 2017; 128(2):605–16.Google Scholar
  98. 98.
    Lee KH, et al. Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus. J Neurosurg. 2004;101(3):511–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Shon YM, et al. High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery. Neurosci Lett. 2010;475(3):136–40.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Bennet KE, et al. A diamond-based electrode for detection of neurochemicals in the human brain. Front Hum Neurosci. 2016;10:102.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Jang DP, et al. Paired pulse voltammetry for differentiating complex analytes. Analyst. 2012;137(6):1428–35.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Koehne JE, et al. Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry. Analyst. 2011;136(9):1802–5.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Chang SY, et al. Wireless fast-scan cyclic voltammetry measurement of histamine using WINCS--a proof-of-principle study. Analyst. 2012;137(9):2158–65.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Chang SY, et al. Development of the Mayo investigational neuromodulation control system: toward a closed-loop electrochemical feedback system for deep brain stimulation. J Neurosurg. 2013;119(6):1556–65.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Grahn PJ, et al. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies. Front Neurosci. 2014;8:169.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Min HK, et al. Dopamine release in the nonhuman primate caudate and putamen depends upon site of stimulation in the subthalamic nucleus. J Neurosci. 2016;36(22):6022–9.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Graupe D, et al. Adaptively controlling deep brain stimulation in essential tremor patient via surface electromyography. Neurol Res. 2010;32(9):899–904.PubMedCrossRefGoogle Scholar
  108. 108.
    Shukla P, et al. A neural network-based design of an on-off adaptive control for deep brain stimulation in movement disorders. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4140–3.Google Scholar
  109. 109.
    Malekmohammadi M, et al. Kinematic adaptive deep brain stimulation for resting tremor in Parkinson’s disease. Mov Disord. 2016;31(3):426–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Khobragade N, Graupe D, Tuninetti D. Towards fully automated closed-loop deep brain stimulation in Parkinson’s disease patients: a LAMSTAR-based tremor predictor. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:2616–9.PubMedGoogle Scholar
  111. 111.
    Contarino MF, et al. Directional steering: a novel approach to deep brain stimulation. Neurology. 2014;83(13):1163–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Pollo C, et al. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain. 2014;137(7):2015–26.PubMedCrossRefGoogle Scholar
  113. 113.
    Bour LJ, et al. Directional recording of subthalamic spectral power densities in Parkinson’s disease and the effect of steering deep brain stimulation. Brain Stimul. 2015;8(4):730–41.PubMedCrossRefGoogle Scholar
  114. 114.
    Fernández-García C, et al. Directional local field potential recordings for symptom-specific optimization of deep brain stimulation. Mov Disord. 2017;32:626.PubMedCrossRefGoogle Scholar
  115. 115.
    Vansteensel MJ, et al. Fully implanted brain-computer interface in a locked-in patient with ALS. N Engl J Med. 2016;375(21):2060–6.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Gates B. The road ahead. London: Penguin Books; 1995.Google Scholar
  117. 117.
    Palmerini L, et al. A wavelet-based approach to fall detection. Sensors (Basel). 2015;15(5):11575–86.CrossRefGoogle Scholar
  118. 118.
    Wu F, et al. Development of a wearable-sensor-based fall detection system. Int J Telemed Appl. 2015;2015:576364.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Schwenk M, et al. Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: baseline results of the Arizona frailty cohort study. Gerontology. 2015;61(3):258–67.PubMedCrossRefGoogle Scholar
  120. 120.
    Wikipedia. Smart City. Available from: https://en.wikipedia.org/wiki/Smart_city.
  121. 121.
    Jalal A, Kamal S, Kim D. A depth video sensor-based life-logging human activity recognition system for elderly care in smart indoor environments. Sensors (Basel). 2014;14(7):11735–59.CrossRefGoogle Scholar
  122. 122.
    Siddiqi MH, et al. Video-based human activity recognition using multilevel wavelet decomposition and stepwise linear discriminant analysis. Sensors (Basel). 2014;14(4):6370–92.CrossRefGoogle Scholar
  123. 123.
    Kostikis N, et al. Smartphone-based evaluation of Parkinsonian hand tremor: quantitative measurements vs clinical assessment scores. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:906–9.PubMedGoogle Scholar
  124. 124.
    Parviainen J, et al. Adaptive activity and environment recognition for mobile phones. Sensors (Basel). 2014;14(11):20753–78.CrossRefGoogle Scholar
  125. 125.
    Shoaib M, et al. Fusion of smartphone motion sensors for physical activity recognition. Sensors (Basel). 2014;14(6):10146–76.CrossRefGoogle Scholar
  126. 126.
    Garcia-Ceja E, et al. Long-term activity recognition from wristwatch accelerometer data. Sensors (Basel). 2014;14(12):22500–24.CrossRefGoogle Scholar
  127. 127.
    Wile DJ, Ranawaya R, Kiss ZH. Smart watch accelerometry for analysis and diagnosis of tremor. J Neurosci Methods. 2014;230:1–4.PubMedCrossRefGoogle Scholar
  128. 128.
    Buchman AS, et al. Associations between quantitative mobility measures derived from components of conventional mobility testing and Parkinsonian gait in older adults. PLoS One. 2014;9(1):e86262.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Cancela J, et al. Wearability assessment of a wearable system for Parkinson’s disease remote monitoring based on a body area network of sensors. Sensors (Basel). 2014;14(9):17235–55.CrossRefGoogle Scholar
  130. 130.
    Heldman DA, et al. Clinician versus machine: reliability and responsiveness of motor endpoints in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(6):590–5.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Mera T, et al. Kinematic optimization of deep brain stimulation across multiple motor symptoms in Parkinson’s disease. J Neurosci Methods. 2011;198(2):280–6.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Mera TO, et al. Feasibility of home-based automated Parkinson’s disease motor assessment. J Neurosci Methods. 2012;203(1):152–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Sanchez-Ferro A, Maetzler W. Advances in sensor and wearable technologies for Parkinson’s disease. Mov Disord. 2016;31(9):1257.PubMedCrossRefGoogle Scholar
  134. 134.
    Campos-Romo A, et al. Quantitative evaluation of MPTP-treated nonhuman Parkinsonian primates in the HALLWAY task. J Neurosci Methods. 2009;177(2):361–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Chien SL, et al. The efficacy of quantitative gait analysis by the GAITRite system in evaluation of Parkinsonian bradykinesia. Parkinsonism Relat Disord. 2006;12(7):438–42.PubMedCrossRefGoogle Scholar
  136. 136.
    Hubble RP, et al. Wearable sensor use for assessing standing balance and walking stability in people with Parkinson’s disease: a systematic review. PLoS One. 2015;10(4):e0123705.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Pulliam CL, et al. Motion sensor strategies for automated optimization of deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(4):378–82.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Mera TO, et al. Objective quantification of arm rigidity in MPTP-treated primates. J Neurosci Methods. 2009;177(1):20–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Endo T, et al. A novel method for systematic analysis of rigidity in Parkinson’s disease. Mov Disord. 2009;24(15):2218–24.PubMedCrossRefGoogle Scholar
  140. 140.
    Prochazka A, et al. Measurement of rigidity in Parkinson’s disease. Mov Disord. 1997;12(1):24–32.PubMedCrossRefGoogle Scholar
  141. 141.
    Baker JJ, et al. Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors. IEEE Trans Neural Syst Rehabil Eng. 2010;18(4):424–32.PubMedCrossRefGoogle Scholar
  142. 142.
    Li Y, et al. A low power, parallel wearable multi-sensor system for human activity evaluation. Proc IEEE Annu Northeast Bioeng Conf. 2015; 2015.Google Scholar
  143. 143.
    Tzallas AT, et al. PERFORM: a system for monitoring, assessment and management of patients with Parkinson’s disease. Sensors (Basel). 2014;14(11):21329–57.CrossRefGoogle Scholar
  144. 144.
    Lieber B, et al. Motion sensors to assess and monitor medical and surgical management of Parkinson disease. World Neurosurg. 2015;84(2):561–6.PubMedCrossRefGoogle Scholar
  145. 145.
    Papapetropoulos S, et al. Objective monitoring of tremor and bradykinesia during DBS surgery for Parkinson disease. Neurology. 2008;70(15):1244–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Marceglia S, et al. Web-based telemonitoring and delivery of caregiver support for patients with Parkinson disease after deep brain stimulation: protocol. JMIR Res Protoc. 2015;4(1):e30.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Medical Neurobiology (Physiology)Institute of Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center (ELSC) for Brain Research, The Hebrew UniversityJerusalemIsrael
  2. 2.Department of NeurosurgeryHadassah University HospitalJerusalemIsrael

Personalised recommendations