International Conference on Combinatorics on Words

WORDS 2015: Combinatorics on Words pp 14-26 | Cite as

Equality Testing of Compressed Strings

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9304)

Abstract

This paper gives a survey on efficient algorithms for checking equality of grammar-compressed strings, i.e., strings that are represented succinctly by so called straight-line programs.

References

  1. 1.
    Agrawal, M., Biswas, S.: Primality and identity testing via chinese remaindering. J. Assoc. Comput. Mach. 50(4), 429–443 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In: Proceedings of SODA 2000, pp. 819–828. ACM/SIAM (2000)Google Scholar
  3. 3.
    Balcázar, J.L.: The complexity of searching succinctly represented graphs. In: Fülöp, Z. (ed.) ICALP 1995. LNCS, vol. 944, pp. 208–219. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  4. 4.
    Berman, P., Karpinski, M., Larmore, L.L., Plandowski, W., Rytter, W.: On the complexity of pattern matching for highly compressed two-dimensional texts. J. Comput. Syst. Sci. 65(2), 332–350 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Borchert, B., Lozano, A.: Succinct circuit representations and leaf language classes are basically the same concept. Inf. Process. Lett. 59(4), 211–215 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Charikar, M., Lehman, E., Lehman, A., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–2576 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Eberly, W.: Very fast parallel polynomial arithmetic. SIAM J. Comput. 18(5), 955–976 (1989)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fich, F.E., Tompa, M.: The parallel complexity of exponentiating polynomials over finite fields. In: Proceedings of STOC 1985, pp. 38–47. ACM (1985)Google Scholar
  9. 9.
    Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math. Soc. 16, 109–114 (1965)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Galperin, H., Wigderson, A.: Succinct representations of graphs. Inf. Control 56(3), 183–198 (1983)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms for Lempel-Ziv encoding (extended abstract). In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 392–403. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  12. 12.
    Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Randomized efficient algorithms for compressed strings: the finger-print approach (extended abstract). In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 39–49. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  13. 13.
    Goto, K., Bannai, H., Inenaga, S., Takeda, M.: Fast q-gram mining on SLP compressed strings. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 278–289. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  14. 14.
    Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-Completeness Theory. Oxford University Press, Oxford (1995)Google Scholar
  15. 15.
    Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding equivalence of normed context-free processes. In: Proceedings of FOCS 1994, pp. 623–631. IEEE Computer Society (1994)Google Scholar
  16. 16.
    Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimilarity of normed context-free processes. Theor. Comput. Sci. 158(1&2), 143–159 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jeż, A.: Faster fully compressed pattern matching by recompression. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 533–544. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  18. 18.
    Jeż, A.: Recompression: a simple and powerful technique for word equations. In: Proceedings of STACS 2013. LIPIcs, vol. 20, pp. 233–244. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)Google Scholar
  19. 19.
    Jeż, A., Lohrey, M.: Approximation of smallest linear tree grammars. Technical report, arXiv.org (2014). http://arxiv.org/abs/1309.4958
  20. 20.
    Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Comput. Complex. 13(1–2), 1–46 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Karpinski, M., Rytter, W.: Pattern-matching for strings with short descriptions. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 205–214. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  22. 22.
    König, D., Lohrey, M.: Parallel identity testing for skew circuits with big powers and applications. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 445–458. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  23. 23.
    Lifshits, Y.: Processing compressed texts: a tractability border. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  24. 24.
    Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 681–692. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  25. 25.
    Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex. Cryptology 4(2), 241–299 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lohrey, M.: The Compressed Word Problem for Groups. SpringerBriefs in Mathematics. Springer, Heidelberg (2014) CrossRefMATHGoogle Scholar
  27. 27.
    Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equality-tests in polylogarithmic time. In: Proceedings of SODA 1994, pp. 213–222. ACM/SIAM (1994)Google Scholar
  28. 28.
    Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equality tests in polylogarithmic time. Algorithmica 17(2), 183–198 (1997)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm for strings in terms of straight-line programs. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264, pp. 1–11. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  30. 30.
    Papadimitriou, C.H., Yannakakis, M.: A note on succinct representations of graphs. Inform. Control 71(3), 181–185 (1986)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994) CrossRefGoogle Scholar
  32. 32.
    Schmidt-Schauß, M., Schnitger, G.: Fast equality test for straight-line compressed strings. Inf. Process. Lett. 112(8–9), 341–345 (2012)CrossRefGoogle Scholar
  33. 33.
    Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5), 865–877 (1991)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Veith, H.: Succinct representation, leaf languages, and projection reductions. Inf. Comput. 142(2), 207–236 (1998)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Vollmer, H.: Introduction to Circuit Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Universität SiegenSiegenGermany

Personalised recommendations