Advertisement

International Conference on Combinatorics on Words

WORDS 2015: Combinatorics on Words pp 135-146 | Cite as

Arithmetics on Suffix Arrays of Fibonacci Words

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9304)

Abstract

We study the sequence of Fibonacci words and some of its derivatives with respect to their suffix array, inverse suffix array and Burrows-Wheeler transform based on the respective suffix array. We show that the suffix array is a rotation of its inverse under certain conditions, and that the factors of the LZ77 factorization of any Fibonacci word yield again similar characteristics.

Keywords

Suffix Tree Suffix Array Reversed Rotation Common Prefix Homogenous Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We are grateful to Gabriele Fici for helpful discussion, and to our student Sven Schrinner who discovered one rotation property while solving an exercise.

References

  1. 1.
    Berstel, J., Savelli, A.: Crochemore factorization of sturmian and other infinite words. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 157–166. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  2. 2.
    Burrows, M., Wheeler, D.J., Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Digital Equipment Corporation, Technical report (1994)Google Scholar
  3. 3.
    Christodoulakis, M., Iliopoulos, C.S., Ardila, Y.J.P.: Simple algorithm for sorting the Fibonacci string rotations. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 218–225. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  4. 4.
    Droubay, X.: Palindromes in the Fibonacci word. Inf. Process. Lett. 55(4), 217–221 (1995)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  7. 7.
    Gramss, T.: Entropy of the symbolic sequence for critical circle maps. Phys. Rev. E 50, 2616–2620 (1994)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Iliopoulos, C.S., Moore, D., Smyth, W.F.: A characterization of the squares in a Fibonacci string. Theor. Comput. Sci. 172(1–2), 281–291 (1997)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hoggatt Jr., V.E., Bicknell-Johnson, M.: Composites and primes among powers of Fibonacci numbers increased or decreased by one. Fibonacci Q. 15, 2 (1977)Google Scholar
  10. 10.
    Kärkkäinen, J.: Fast bwt in small space by blockwise suffix sorting. Theor. Comput. Sci. 387(3), 249–257 (2007)CrossRefMATHGoogle Scholar
  11. 11.
    de Luca, A.: A combinatorial property of the Fibonacci words. Inf. Process. Lett. 12(4), 193–195 (1981)CrossRefMATHGoogle Scholar
  12. 12.
    de Luca, A., de Luca, A.: Combinatorial properties of sturmian palindromes. Int. J. Found. Comput. Sci. 17(03), 557–573 (2006)CrossRefMATHGoogle Scholar
  13. 13.
    Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms. SODA 1990, pp. 319–327, Philadelphia, PA, USA (1990)Google Scholar
  14. 14.
    Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian words. Inf. Process. Lett. 86(5), 241–246 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Monnerot-Dumaine, A.: The Fibonacci Word fractal, 24 pages, 25 figures, February 2009Google Scholar
  16. 16.
    Pirillo, G.: Fibonacci numbers and words. Discrete Math. 173(1–3), 197–207 (1997)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rytter, W.: The structure of subword graphs and suffix trees of Fibonacci words. Theor. Comput. Sci. 363(2), 211–223 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Saari, K.: Periods of factors of the Fibonacci word. In: Proceedings of WORDS 2007. Institut de Mathematiques de Luminy (2007)Google Scholar
  19. 19.
    Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput. Syst. 41(4), 589–607 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Simpson, J., Puglisi, S.J.: Words with simple burrows-wheeler transforms. Electr. J. Comb. 15(1) (2008)Google Scholar
  21. 21.
    Wells, D.: Prime Numbers: The Most Mysterious Figures in Math. Wiley, Hoboken (2011)Google Scholar
  22. 22.
    Wen, Z.X., Wen, Z.Y.: Some properties of the singular words of the Fibonacci word. Eur. J. Comb. 15(6), 587–598 (1994)CrossRefMATHGoogle Scholar
  23. 23.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceTU DortmundDortmundGermany

Personalised recommendations