Skip to main content

Laser-Plasma Particle Sources for Biology and Medicine

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science XII

Abstract

Ultrashort, intense laser pulses can drive in plasmas small sized linear accelerators (Laser-Linac’s) of high energy elementary particles. These novel devices are facing a continuous, fast progress making them suitable alternatives to conventional linacs in many applications. Among them, cancer therapy may have by far the highest social impact at a global level. This paper is aimed at giving an updated overview of the scientific and technological effort devoted worldwide to the optimization of the laser acceleration technology in order to fulfill the clinical requirements. Here we discuss both ion and electron acceleration considering the different, challenging problems to be solved in each case. Current studies on radiobiology already in progress in many labs with the existing laser-based sources of particles are also described. The overall scenario in the field appears extremely exciting, and promises rapid, effective development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Graydon, Nature Photonics 7, 585 (2013), A. Giulietti and A. Gamucci, Progress in Ultrafast Intense Laser Science, Vol. V, Ch. 8, Springer Series in Chemical Physics (Springer, Heidelberg, 2010)

    Google Scholar 

  2. G.A. Mourou, T. Tajima, S. Bulanov, Rev. Modern Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  3. S.P. Le Blanc, R. Sauerbrey, S.C. Rae, K. Burnett, J. Opt. Soc. Am. B 10, 1801 (1993)

    Article  ADS  Google Scholar 

  4. D. Giulietti et al., Phys. Rev. Lett. 79, 3194 (1997)

    Article  ADS  Google Scholar 

  5. J.K. Koga, N. Naumova, M. Kando, L.N. Tsintsadtze, K. Nakajima, S.V. Bulanov, H. Dewa, H. Kotaki, T. Tajima, Phys. Plasmas 7, 5223 (2000)

    Article  ADS  Google Scholar 

  6. A. Giulietti, P. Tomassini, M. Galimberti, D. Giulietti, L.A. Gizzi, P. Koester, L. Labate, T. Ceccotti, P. D’Oliveira, T. Auguste, P. Monot, Ph Martin, Phys. Plasmas 13, 093103 (2006)

    Article  ADS  Google Scholar 

  7. A. Giulietti, A. André, S. Dobosz, Dufrénoy, D. Giulietti, T. Hosokai, P. Koester, H. Kotaki, L. Labate, T. Levato, R. Nuter, N. C. Pathak, P. Monot, and L. A. Gizzi. Phys. Plasmas 20, 082307 (2013)

    Article  ADS  Google Scholar 

  8. T. Tajima, J. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  9. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)

    Article  ADS  Google Scholar 

  10. W. Priedhorsky, D. Lier, R. Day, D. Gerke, Phys. Rev. Lett. 47, 1661 (1981)

    Article  ADS  Google Scholar 

  11. D.M. Villeneuve, G.D. Enright, M.C. Richardson, Phys. Rev. A 27, 2656 (1983)

    Article  ADS  Google Scholar 

  12. V. I. Veksler, in Proceedings of CERN Symposium on High Energy Accelerators and Pion Physics, vol. 1, p. 80 (Geneva, Switzerland, 1956)

    Google Scholar 

  13. A.P. Fews, P.A. Norreys, F.N. Beg, A.R. Bel, A.R. Dangor, C.N. Danson, P. Lee, S.J. Rose, Phys. Rev. Lett. 73, 1801 (1994)

    Article  ADS  Google Scholar 

  14. S. Bulanov, T. Esirkepov, V. Khoroshkov, A. Kuznetsov, F. Pegoraro, Phys. Lett. A 299, 240 (2002)

    Article  ADS  Google Scholar 

  15. S.S. Bulanov et al., Med. Phys. 35, 1770 (2008)

    Article  Google Scholar 

  16. Y.A. Gauduel, V. Malka, Proceedings of SPIE 8954; doi:10.1117/12.2038983 (2014)

  17. V. Malka et al., Med. Phys. 31, 1587 (2004)

    Article  Google Scholar 

  18. http://www.cnao.it/index.php/en/

  19. http://neurosurgery.mgh.harvard.edu/protonbeam/nptcbrochure.pdf

  20. R.R. Wilson, Radiology 47, 487 (1946)

    Article  Google Scholar 

  21. J. Lawrence, Cancer 10, 795 (1957)

    Article  Google Scholar 

  22. S. Sawada, Nucl. Phys. A 834, 701 (2010)

    Article  ADS  Google Scholar 

  23. M. Goitein, A.J. Lomax, E.S. Pedroni, Phys. Today 55, 45 (2012)

    Article  Google Scholar 

  24. M. Schippers, Beam Delivery System for Particle Therapy, in Proton and Ion Carbon Therapy, C.-M. Charlie Ma, T. Lomax (eds.), CRC Press (Boca Raton, FL) p. 43 (2013)

    Google Scholar 

  25. P. Mulser and D. Bauer, High Power Laser-Matter Interaction, Springer Tracts in Modern Physics, vol. 238 (Springer, New York, 2010)

    Google Scholar 

  26. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013)

    Article  ADS  Google Scholar 

  27. H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012)

    Article  ADS  Google Scholar 

  28. S.C. Wilks et al., Phys. Plasmas 8, 542 (2001)

    Article  ADS  Google Scholar 

  29. Mackinnon et al., Phys. Rev. Lett. 86(1769) (2001)

    Google Scholar 

  30. Zeil et al., New J. Phys. 12(045015) (2010)

    Google Scholar 

  31. T. Ceccotti et al., Phys. Rev. Lett. 99, 185002 (2007)

    Article  ADS  Google Scholar 

  32. M. Kaluza et al., Phys. Rev. Lett. 93, 045003 (2004)

    Article  ADS  Google Scholar 

  33. T. Ceccotti et al., Phys. Rev. Lett. 111, 18501 (2013)

    Article  Google Scholar 

  34. S. Sinigardi et al., Nucl. Instr. Meth. Phys. Res. A740, 99 (2014)

    Article  ADS  Google Scholar 

  35. L. Landau et E. Lifchitz, Théorie du Champ, Editions (MIR, Moscou, 1966)

    Google Scholar 

  36. M. Tamburini et al., New J. Phys. 12, 123005 (2010)

    Article  ADS  Google Scholar 

  37. M.D. Perry et al., Opt. Lett. 24, 160 (1999)

    Article  ADS  Google Scholar 

  38. R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000)

    Article  ADS  Google Scholar 

  39. M. Aoyama et al., Opt. Lett. 28, 1594 (2003)

    Article  ADS  Google Scholar 

  40. H. Kiriyama et al., Opt. Comm. 282, 625 (2009)

    Article  ADS  Google Scholar 

  41. H. Kiriyama et al., Opt. Lett. 35, 1497 (2010)

    Article  ADS  Google Scholar 

  42. K. Ogura et al., Opt. Lett. 37, 2868 (2012)

    Article  ADS  Google Scholar 

  43. A. Yogo et al., Appl. Phys. Lett. 94, 181502 (2009)

    Article  ADS  Google Scholar 

  44. A. Yogo et al., Appl. Phys. Lett. 98, 053701 (2011)

    Article  ADS  Google Scholar 

  45. D. Doria et al., AIP Adv. 2, 011209 (2012)

    Article  ADS  Google Scholar 

  46. E. Fourkal et al., Phys. Med. Biol. 56, 3123 (2011)

    Article  Google Scholar 

  47. F. Fiorini et al., Phys. Med. Biol. 56, 6969 (2011)

    Article  Google Scholar 

  48. A.Y. Faenov et al., Appl. Phys. Lett. 95, 101107 (2009)

    Google Scholar 

  49. P.D. Mangles et al., Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  50. G.C.R. Geddes et al., Nature 431, 538 (2004)

    Article  ADS  Google Scholar 

  51. J. Faure et al., Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

  52. W. Leemans et al., Nat. Phys. 2, 696 (2006)

    Article  Google Scholar 

  53. X. Wang et al., Nature Commun. 4, Article no. 1988 (2013) doi:10.1038/ncomms2988

  54. IARC, Cancer Fact Sheets, Globocan, http://globocan.iarc.fr/

  55. D. Rodin et al., Lancet Oncol. 15, 378 (2014)

    Article  Google Scholar 

  56. U. Veronesi et al., Ann. Oncol. 12, 997 (2001)

    Article  Google Scholar 

  57. A.S. Beddar et al., Med. Phys. 33, 1476 (2006)

    Article  Google Scholar 

  58. http://www.businesswire.com/news/home/20140313005577/en/Research-Markets-External-Beam-Radiation-Therapy-Devices

  59. R. Baskar et al., Int. J. Med. Sci. 9, 193 (2012)

    Article  Google Scholar 

  60. A. Giulietti et al., Phys. Rev. Lett. 101, 105002 (2008)

    Article  ADS  Google Scholar 

  61. F. Baffigi et al., The LEARC Concept: Laser-driven Electron Accelerator for Radiotherapy of Cancer, INO-CNR Internal Report (2014). Accessed: ilil.ino.it

    Google Scholar 

  62. M. Galimberti et al., Rev. Sci. Instrum. 76, 053303 (2005)

    Article  ADS  Google Scholar 

  63. E. Lefebvre et al., Nucl. Fus. 43, 629 (2003)

    Article  ADS  Google Scholar 

  64. L. Fulgentini et al., High RBE doses delivered by a laser driven electron source , INO-CNR Internal Report (2014). Accessed: ilil.ino.it

    Google Scholar 

  65. N. Hunter, C.R. Muirhead, J. Radiol. Prot. 29, 5 (2009)

    Article  Google Scholar 

  66. Y. Oishi et al., Jpn. J. Appl. Phys. 53, 092702 (2014)

    Google Scholar 

  67. V. Malka, J. Faure, Y.A. Gauduel, Mutat. Res. 704, 142 (2010)

    Article  Google Scholar 

  68. E. Beyreuther et al., Med. Phys. 37, 1392 (2010)

    Article  Google Scholar 

  69. L. Labate et al, INO-CNR Internal Report (prot. 151, 13/01/11) (2011)

    Google Scholar 

  70. L. Laschinsky et al., J. Radiat. Res. 53, 395 (2012)

    Article  Google Scholar 

  71. L. Labate et al., Proc.SPIE 8779 (2013)

    Google Scholar 

  72. M. Schurer et al., Biomed. Tech. 57, 62–65 (2012)

    Article  Google Scholar 

  73. Y.A. Gauduel et al., Nat. Phys. 4, 447 (2008)

    Article  Google Scholar 

  74. Y.A. Gauduel et al., Eur. Phys. J. D 4, 121 (2010)

    Article  ADS  Google Scholar 

  75. S.P.D. Mangles et al., Laser Part. Beams 24, 185–190 (2006)

    Article  Google Scholar 

  76. F. Merrill et al., Electron radiography. Nucl. Instrum. Method Phys. Res. B261, 382–386 (2007)

    Google Scholar 

  77. A.Ya. Faenov et al., Laser Part. Beams 26, 69 (2008)

    Google Scholar 

  78. P. Koester et al., Laser Part. Beams 33, 331 (2015)

    Google Scholar 

  79. G.C. Bussolino et al., J. Phys D: Appl. Phys. 46, 245501 (2013)

    Article  ADS  Google Scholar 

  80. V. Ramanathan et al., Phys. Rev. Special Topics Accel. Beams 13, 104701 (2010)

    Google Scholar 

Download references

Acknowledgments

The authors of this Chapter are operating in the framework of the CNR High Field Photonics Unit (MD.P03.034). They acknowledge financial support from the CNR funded Italian research Network ‘ELI-Italy (Attoseconds)’, from the Italian Ministry of Health funded project GR-2009-1608935 (D.I. AgeNaS) and from the INFN funded “G-RESIST” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Giulietti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giulietti, A., Bussolino, G., Fulgentini, L., Koester, P., Labate, L., Gizzi, L.A. (2015). Laser-Plasma Particle Sources for Biology and Medicine. In: Yamanouchi, K., Roso, L., Li, R., Mathur, D., Normand, D. (eds) Progress in Ultrafast Intense Laser Science XII. Springer Series in Chemical Physics(), vol 112. Springer, Cham. https://doi.org/10.1007/978-3-319-23657-5_8

Download citation

Publish with us

Policies and ethics