Backward Lasing of Femtosecond Plasma Filaments

  • Yi Liu
  • Sergey Mitryukovskiy
  • Pengji Ding
  • Guillaume Point
  • Yohann Brelet
  • Aurélien Houard
  • Arnaud Couairon
  • André MysyrowiczEmail author
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 112)


Stimulated emissions in both backward and forward directions from a plasma filament in ambient air or pure nitrogen have been observed in recent years. In this article, we present our recent experimental results concerning the backward stimulated emission. We first demonstrate that backward stimulated emission from neutral N\(_{2}\) molecules can be effectively generated with a circularly polarized 800 nm femtosecond laser pulse in pure nitrogen. Then, we show that the presence of oxygen is detrimental to the laser gain. To further confirm the presence of population inversion, we send a counter-propagating seeding pulse into the plasma filament. This leads to an amplification of the seeding pulse by two orders of magnitude. The crucial role of pump laser polarization indicates that the inelastic collisions between the energetic electrons and the neutral N\(_{2}\) molecules are at the origin of population inversion between the relevant states.


Pump Pulse Femtosecond Laser Pulse Lasing Emission Population Inversion Amplify Spontaneous Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge useful discussions with Paul Corkum of Ottawa University. The authors are also grateful to Thierry Lefrou and Aurélie Jullien of LOA for important technical help. Yi Liu acknowledges the stimulating discussion with Ya Cheng and Jinping Yao of SIOM, Huailiang Xu of Jilin University, Hongbing Jiang of Peking University, Benjamin Forestier of CILAS.


  1. 1.
    A. Dogariu, J.B. Michael, M.O. Scully, R.B. Miles, Science 331, 442 (2011)CrossRefADSGoogle Scholar
  2. 2.
    D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S.L. Chin, A. Baltuška, Phys. Rev. A 86, 033831 (2012)CrossRefADSGoogle Scholar
  3. 3.
    P.R. Hemmer, R.B. Miles, P. Polynkin, T. Siebert, A.V. Sokolov, P. Sprangle, M.O. Scully, Proc. Natl. Acad. Sci. USA 108, 3130 (2011)CrossRefADSGoogle Scholar
  4. 4.
    P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, Appl. Phys. Lett. 98, 211102 (2011)CrossRefADSGoogle Scholar
  5. 5.
    P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, R. Fernsler, J. Appl. Phys. 111, 033105 (2012)CrossRefADSGoogle Scholar
  6. 6.
    Q. Luo, W. Liu, S.L. Chin, Appl. Phys. B 76, 337 (2003)CrossRefADSGoogle Scholar
  7. 7.
    S. Owada, A. Azarm, S. Hosseini, A. Iwasaki, S.L. Chin, K. Yamanouchi, Chem. Phys. Lett. 581, 21 (2013)CrossRefADSGoogle Scholar
  8. 8.
    S. Mitryukovskiy, P. Ding, A. Houard, A. Mysyrowicz, Y. Liu, Opt. Express, 22, 12750 (2014)Google Scholar
  9. 9.
    P. Ding, S. Mitryukovskiy, A. Houard, A. Couairon, A. Mysyrowicz, Y. Liu, Opt. Express, 22, 29964 (2014)Google Scholar
  10. 10.
    J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S.L. Chin, Y. Cheng, Z. Xu, Phys. Rev. A 84, 051802(R) (2011)CrossRefADSGoogle Scholar
  11. 11.
    J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S.L. Chin, Y. Cheng, Z. Xu, New J. Phys. 15, 023046 (2013)CrossRefADSGoogle Scholar
  12. 12.
    Y. Liu, Y. Brelet, G. Piont, A. Houard, A. Mysyrowicz, Opt. Express 21, 22791 (2013)CrossRefADSGoogle Scholar
  13. 13.
    T. Wang, J. Ju, J.F. Daigle, S. Yuan, R. Li, S.L. Chin, Las. Phys. Lett. 10, 125401 (2013)CrossRefADSGoogle Scholar
  14. 14.
    H. Zhang, C. Jing, J. Yao, G. Li, B. Zeng, W. Chu, J. Ni, H. Xie, H. Xu, S.L. Chin, K. Yamanouchi, Y. Cheng, Z. Xu, Phys. Rev. X 3, 041009 (2013)Google Scholar
  15. 15.
    W. Chu, G. Li, H. Xie, J. Ni, J. Yao, B. Zeng, H. Zhang, C. Jing, H. Xu, Y. Cheng, Z. Xu, Las. Phys. Lett. 10, 125401 (2013)CrossRefADSGoogle Scholar
  16. 16.
    G. Point, Y. Liu, Y. Brelet, S. Mitryukovskiy, P.J. Ding, A. Houard, A. Mysyrowicz, Opt. Lett. 39, 1725 (2014)CrossRefADSGoogle Scholar
  17. 17.
    D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, Phys. Rev. A 88, 041805 (R) (2013)Google Scholar
  18. 18.
    P.N. Malevich, D. Kartashov, Z. Pu, S. Alisauskas, A. Pugzlys, A. Baltuska, L. Ginniunas, R. Danielius, A.A. Lanin, A.M. Zheltikov, M. Marangoni, G. Cerullo, Opt. Express 20, 18784 (2012)CrossRefADSGoogle Scholar
  19. 19.
    R.S. Kunabenchi, M.R. Gorbal, M.I. Savadatt, Prog. Quantum Electron. 9, 259 (1984)CrossRefADSGoogle Scholar
  20. 20.
    H.L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S.L. Chin, Chem. Phys. 360, 171 (2009)CrossRefADSGoogle Scholar
  21. 21.
    M. Kolesik, J.V. Moloney, E.M. Wright, Phys. Rev. E 64, 046607 (2001)CrossRefADSGoogle Scholar
  22. 22.
    J.T. Fons, R.S. Schappe, C.C. Lin, Phys. Rev. A 53, 2239 (1996)CrossRefADSGoogle Scholar
  23. 23.
    B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, Phys. Rev. Lett. 106, 255002 (2011)CrossRefADSGoogle Scholar
  24. 24.
    E. Schulz, D.S. Steingrube, T. Binhammer, M.B. Gaarde, A. Couairon, U. Morgner, M. Kovačev, Opt. Express 19, 19495 (2011)CrossRefADSGoogle Scholar
  25. 25.
    M.B. Gaarde, A. Couairon, Phys. Rev. Lett. 103, 043901 (2009)CrossRefADSGoogle Scholar
  26. 26.
    Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, Opt. Commun. 284, 4706 (2011)CrossRefADSGoogle Scholar
  27. 27.
    S. Mitryukovskiy, Y. Liu, A. Houard, A. Mysyrowicz, J. Phys. B: At. Mol. Opt. Phys. 48, 094003 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yi Liu
    • 1
  • Sergey Mitryukovskiy
    • 1
  • Pengji Ding
    • 1
  • Guillaume Point
    • 1
  • Yohann Brelet
    • 1
  • Aurélien Houard
    • 1
  • Arnaud Couairon
    • 2
  • André Mysyrowicz
    • 1
    Email author
  1. 1.Laboratoire d’Optique AppliquéeENSTA-Paristech/CNRS/Ecole PolytechniquePalaiseauFrance
  2. 2.Centre de Physique ThéoriqueCNRS, Ecole PolytechniquePalaiseauFrance

Personalised recommendations