Clear-Air Turbulence in a Changing Climate

Chapter

Abstract

How might the processes generating clear-air turbulence change in a warmer world? We know that observations support an association between clear-air turbulence and shear instability. We also know that the upper atmospheric wind shears are changing in response to greenhouse gas forcing. In particular, theoretical reasoning and climate model simulations both suggest that the vertical shear in horizontal wind is increasing in magnitude at typical aircraft cruising altitudes in the middle latitudes, especially in the winter months in each hemisphere. This increased shearing implies that clear-air turbulence may itself be changing as a consequence of climate change. This chapter reviews the various lines of observational and model-based evidence for trends in clear-air turbulence, by analyzing data from turbulence encounters with aircraft, turbulence diagnosed from reanalysis datasets, passenger injuries caused by turbulence, and turbulence diagnosed from climate models. The possibility of anthropogenic trends in clear-air turbulence opens up a whole new field of academic study, which exists at the interface between the two scientific disciplines of aviation turbulence and climate change. We call for future work to improve our understanding of this poorly understood but potentially important impact of climate change.

References

  1. Arblaster, J., Meehl, G.: Contributions of external forcings to southern annular mode trends. J. Climate 19, 2896–2905 (2006)CrossRefGoogle Scholar
  2. Ballough, J.J.: Advisory Circular 120-88A: Preventing Injuries Caused by Turbulence. U.S. Department of Transportation Federal Aviation Administration, 19 Nov 2007 (2007)Google Scholar
  3. Bengtsson, L., Hagemann, S., Hodges, K.I.: Can climate trends be calculated from reanalysis data? J. Geophys. Res. 109, D11111 (2004)CrossRefGoogle Scholar
  4. Bony, S., et al.: How well do we understand and evaluate climate change feedback processes? J. Climate 19, 2445–3482 (2006)CrossRefGoogle Scholar
  5. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R.B., Piao, S., Thornton, P.: Carbon and other biogeochemical cycles. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)Google Scholar
  6. Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J., Wehner, M.: Long-term climate change: projections, commitments and irreversibility. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)Google Scholar
  7. Delcambre, S.C., Lorenz, D.J., Vimont, D.J., Martin, J.E.: Diagnosing northern hemisphere jet portrayal in 17 CMIP3 global climate models: twenty-first-century projections. J. Climate 26, 4930–4946 (2013)CrossRefGoogle Scholar
  8. Ellrod, G., Knapp, D.: An objective clear-air turbulence forecasting technique: verification and operational use. Weather Forecasting 7, 150–165 (1992)CrossRefGoogle Scholar
  9. Fels, S.B., Mahlman, J.D., Schwarzkopf, M.D., Sinclair, R.W.: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: radiative and dynamical response. J. Atmos. Sci. 37, 2265–2297 (1980)CrossRefGoogle Scholar
  10. Friedlingstein, P., et al.: Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Climate 19, 3337–3353 (2006)CrossRefGoogle Scholar
  11. Gill, P.G.: Objective verification of World Area Forecast Centre clear air turbulence forecasts. Meteorol. Appl. 21, 3–11 (2014)CrossRefGoogle Scholar
  12. Harrison, R.G., Hogan, R.J.: In situ atmospheric turbulence measurement using the terrestrial magnetic field—a compass for a radiosonde. J. Atmos. Oceanic Technol. 23, 517–523 (2006)CrossRefGoogle Scholar
  13. Harrison, R.G., Rogers, G.W., Hogan, R.J.: A three-dimensional magnetometer for motion sensing of a balloon-carried atmospheric measurement package. Rev. Sci. Instrum. 78, 124501 (2007)CrossRefGoogle Scholar
  14. Hartmann, D.L., Klein Tank, A.M.G., Rusticucci, M., Alexander, L.V., Brönnimann, S., Charabi, F.J., Dentener, E.J., Dlugokencky, D.R., Easterling, A., Kaplan, B.J., Soden, P.W., Thorne, Y., Wild, M., Zhai, P.M.: Observations: atmosphere and surface. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)Google Scholar
  15. Hawkins, E., Sutton, R.: The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009)CrossRefGoogle Scholar
  16. Jaeger, E.B., Sprenger, M.: A northern-hemispheric climatology of indices for clear air turbulence in the tropopause region derived from ERA40 re-analysis data. J. Geophys. Res. 112, D20106 (2007)CrossRefGoogle Scholar
  17. Joshi, M., et al.: Projections of when temperature change will exceed 2°C above pre-industrial levels. Nat. Clim. Change 1, 407–412 (2011)CrossRefGoogle Scholar
  18. Kauffmann, P.: The business case for turbulence sensing systems in the US air transport sector. J. Air Transport Manage. 8, 99–107 (2002)CrossRefGoogle Scholar
  19. Kim, J.-H., Chun, H.-Y.: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteorol. Climatol. 50(2), 311–324 (2011)CrossRefGoogle Scholar
  20. Le Quéré, C., et al.: The global carbon budget 1959–2011. Earth Syst. Sci. Data 5, 165–186 (2013)CrossRefGoogle Scholar
  21. Lorenz, D.J., DeWeaver, E.T.: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res. 112, D10119 (2007)CrossRefGoogle Scholar
  22. Marlton, G.J., Harrison, R.G., Nicoll, K.A., Williams, P.D.: A balloon-borne accelerometer technique for measuring atmospheric turbulence. Rev. Sci. Instrum. 86, 016109 (2015)CrossRefGoogle Scholar
  23. Meinshausen, M., et al.: Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458, 1158–1162 (2009)CrossRefGoogle Scholar
  24. Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H.: Anthropogenic and natural radiative forcing. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)Google Scholar
  25. Schwartz, B.: The quantitative use of PIREPs in developing aviation weather guidance products. Weather Forecasting 11, 372–384 (1996)CrossRefGoogle Scholar
  26. Sharman, R., Tebaldi, C., Wiener, G., Wolff, J.: An integrated approach to mid- and upper-level turbulence forecasting. Weather Forecasting 21(3), 268–287 (2006)CrossRefGoogle Scholar
  27. Sharman, R.D., Cornman, L.B., Meymaris, G., Pearson, J., Farrar, T.: Description and derived climatologies of automated in situ eddy dissipation rate reports of atmospheric turbulence. J. Appl. Meteorol. Climatol. 53, 1416–1432 (2014)CrossRefGoogle Scholar
  28. Taylor, P.C., Cai, M., Hu, A., Meehl, J., Washington, W., Zhang, G.J.: A decomposition of feedback contributions to polar warming amplification. J. Climate 26, 7023–7043 (2013)CrossRefGoogle Scholar
  29. Van Vuuren, D.P., et al.: The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011)CrossRefGoogle Scholar
  30. Watkins, C.D., Browning, K.A.: The detection of clear air turbulence by radar. Phys. Technol. 4, 28–61 (1973)CrossRefGoogle Scholar
  31. Weaver, A., et al.: Stability of the Atlantic meridional overturning circulation: a model intercomparison. Geophys. Res. Lett. 39, L20709 (2012)CrossRefGoogle Scholar
  32. Williams, P.D., Joshi, M.M.: Intensification of winter transatlantic aviation turbulence in response to climate change. Nat. Clim. Change 3, 644–648 (2013)CrossRefGoogle Scholar
  33. Wolff, J.K., Sharman, R.D.: Climatology of upper-level turbulence over the continental United States. J. Appl. Meteorol. Climatol. 47, 2198–2214 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of MeteorologyUniversity of ReadingReadingUK
  2. 2.Centre for Ocean and Atmospheric SciencesUniversity of East AngliaNorwichUK

Personalised recommendations