Biology and Assembly of the Bacterial Envelope

  • Karine Dufresne
  • Catherine Paradis-BleauEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 883)


All free-living bacterial cells are delimited and protected by an envelope of high complexity. This physiological barrier is essential for bacterial survival and assures multiple functions. The molecular assembly of the different envelope components into a functional structure represents a tremendous biological challenge and is of high interest for fundamental sciences. The study of bacterial envelope assembly has also been fostered by the need for novel classes of antibacterial agents to fight the problematic of bacterial resistance to antibiotics. This chapter focuses on the two most intensively studied classes of bacterial envelopes that belong to the phyla Firmicutes and Proteobacteria. The envelope of Firmicutes typically has one membrane and is defined as being monoderm whereas the envelope of Proteobacteria contains two distinct membranes and is referred to as being diderm. In this chapter, we will first discuss the multiple roles of the bacterial envelope and clarify the nomenclature used to describe the different types of envelopes. We will then define the architecture and composition of the envelopes of Firmicutes and Proteobacteria while outlining their similarities and differences. We will further cover the extensive progress made in the field of bacterial envelope assembly over the last decades, using Bacillus subtilis and Escherichia coli as model systems for the study of the monoderm and diderm bacterial envelopes, respectively. We will detail our current understanding of how molecular machines assure the secretion, insertion and folding of the envelope proteins as well as the assembly of the glycosidic components of the envelope. Finally, we will highlight the topics that are still under investigation, and that will surely lead to important discoveries in the near future.


Bacterial envelope assembly Firmicutes Monoderm Bacillus subtilis Proteobacteria Diderm Escherichia coli Molecular machines Envelope proteins Glycosidic components of the envelope 


  1. Andersson H, von Heijne G (1993) Sec dependent and sec independent assembly of E. coli inner membrane proteins: the topological rules depend on chain length. EMBO J 12(2):683–691PubMedCentralPubMedGoogle Scholar
  2. Angelini S, Deitermann S, Koch HG (2005) FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep 6(5):476–481PubMedCentralPubMedCrossRefGoogle Scholar
  3. Angelini S et al (2006) Membrane binding of the bacterial signal recognition particle receptor involves two distinct binding sites. J Cell Biol 174(5):715–724PubMedCentralPubMedCrossRefGoogle Scholar
  4. Barreteau H et al (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32(2):168–207PubMedCrossRefGoogle Scholar
  5. Bartholomew JW, Mittwer T (1952) The gram stain. Bacteriol Rev 16(1):1–29PubMedCentralPubMedGoogle Scholar
  6. Beck K et al (2000) Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. EMBO J 19(1):134–143PubMedCentralPubMedCrossRefGoogle Scholar
  7. Beveridge TJ (2001) Use of the gram stain in microbiology. Biotech Histochem 76(3):111–118PubMedCrossRefGoogle Scholar
  8. Beveridge TJ, Graham LL (1991) Surface layers of bacteria. Microbiol Rev 55(4):684–705PubMedCentralPubMedGoogle Scholar
  9. Boone DR, Castenholz RW, Garrity GM (2001) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New YorkGoogle Scholar
  10. Bos MP, Robert V, Tommassen J (2007) Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol 61:191–214PubMedCrossRefGoogle Scholar
  11. Bouhss A et al (2008) The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 32(2):208–233PubMedCrossRefGoogle Scholar
  12. Braun V, Rehn K (1969) Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli cell wall. The specific effect of trypsin on the membrane structure. Eur J Biochem 10(3):426–438PubMedCrossRefGoogle Scholar
  13. Briggs MS et al (1986) Conformations of signal peptides induced by lipids suggest initial steps in protein export. Science 233(4760):206–208PubMedCrossRefGoogle Scholar
  14. Brown S, Santa Maria JP, Walker S Jr (2013) Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 67:313–336PubMedCrossRefGoogle Scholar
  15. Buddelmeijer N, Young R (2010) The essential Escherichia coli apolipoprotein N-acyltransferase (Lnt) exists as an extracytoplasmic thioester acyl-enzyme intermediate. Biochemistry 49(2):341–346PubMedCentralPubMedCrossRefGoogle Scholar
  16. Chevance FF, Hughes KT (2008) Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6(6):455–465PubMedCrossRefGoogle Scholar
  17. Chng SS, Gronenberg LS, Kahne D (2010) Proteins required for lipopolysaccharide assembly in Escherichia coli form a transenvelope complex. Biochemistry 49(22):4565–4567PubMedCentralPubMedCrossRefGoogle Scholar
  18. Clark DP (2010) Molecular biology: academic cell update, vol xviii. Academic Press/Elsevier, Amsterdam/Boston, p 784Google Scholar
  19. Collins LV et al (2002) Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J Infect Dis 186(2):214–219PubMedCrossRefGoogle Scholar
  20. Comfort D, Clubb RT (2004) A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria. Infect Immun 72(5):2710–2722PubMedCentralPubMedCrossRefGoogle Scholar
  21. Dalbey RE, Wang P, Kuhn A (2011) Assembly of bacterial inner membrane proteins. Annu Rev Biochem 80:161–187PubMedCrossRefGoogle Scholar
  22. de Pedro MA et al (2001) Constitutive septal murein synthesis in Escherichia coli with impaired activity of the morphogenetic proteins RodA and penicillin-binding protein 2. J Bacteriol 183(14):4115–4126PubMedCentralPubMedCrossRefGoogle Scholar
  23. Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794(5):808–816PubMedCentralPubMedCrossRefGoogle Scholar
  24. den Blaauwen T et al (2008) Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 32(2):321–344CrossRefGoogle Scholar
  25. Dengler V et al (2012) Deletion of hypothetical wall teichoic acid ligases in Staphylococcus aureus activates the cell wall stress response. FEMS Microbiol Lett 333(2):109–120PubMedCrossRefGoogle Scholar
  26. Denoncin K et al (2012) Dissecting the Escherichia coli periplasmic chaperone network using differential proteomics. Proteomics 12(9):1391–1401PubMedCrossRefGoogle Scholar
  27. Depuydt M, Messens J, Collet JF (2011) How proteins form disulfide bonds. Antioxid Redox Signal 15(1):49–66PubMedCrossRefGoogle Scholar
  28. Di Berardino M et al (1996) The monofunctional glycosyltransferase of Escherichia coli is a member of a new class of peptidoglycan-synthesising enzymes. FEBS Lett 392(2):184–188PubMedCrossRefGoogle Scholar
  29. Dilks K et al (2003) Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185(4):1478–1483PubMedCentralPubMedCrossRefGoogle Scholar
  30. Doerrler WT (2006) Lipid trafficking to the outer membrane of Gram-negative bacteria. Mol Microbiol 60(3):542–552PubMedCrossRefGoogle Scholar
  31. Dorr T et al (2014) Differential requirement for PBP1a and PBP1b in in vivo and in vitro fitness of Vibrio cholerae. Infect Immun 82(5):2115–2124PubMedCentralPubMedCrossRefGoogle Scholar
  32. Dramsi S et al (2008) Covalent attachment of proteins to peptidoglycan. FEMS Microbiol Rev 32(2):307–320PubMedCrossRefGoogle Scholar
  33. Driessen AJ, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667PubMedCrossRefGoogle Scholar
  34. du Plessis DJ, Nouwen N, Driessen AJ (2011) The Sec translocase. Biochim Biophys Acta 1808(3):851–865PubMedCrossRefGoogle Scholar
  35. Duguay AR, Silhavy TJ (2004) Quality control in the bacterial periplasm. Biochim Biophys Acta 1694(1–3):121–134PubMedCrossRefGoogle Scholar
  36. Dutton RJ et al (2008) Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc Natl Acad Sci U S A 105(33):11933–11938PubMedCentralPubMedCrossRefGoogle Scholar
  37. Dziarski R, Gupta D (2005) Peptidoglycan recognition in innate immunity. J Endotoxin Res 11(5):304–310PubMedCrossRefGoogle Scholar
  38. Eberhardt A et al (2012) Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. Microb Drug Resist 18(3):240–255PubMedCrossRefGoogle Scholar
  39. Egan AJ et al (2014) Outer-membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B. Proc Natl Acad Sci U S A 111(22):8197–8202PubMedCentralPubMedCrossRefGoogle Scholar
  40. Egea PF et al (2004) Substrate twinning activates the signal recognition particle and its receptor. Nature 427(6971):215–221PubMedCrossRefGoogle Scholar
  41. Eisner G et al (2003) Ligand crowding at a nascent signal sequence. J Cell Biol 163(1):35–44PubMedCentralPubMedCrossRefGoogle Scholar
  42. Facey SJ, Kuhn A (2010) Biogenesis of bacterial inner-membrane proteins. Cell Mol Life Sci 67(14):2343–2362PubMedCrossRefGoogle Scholar
  43. Fagan RP, Fairweather NF (2014) Biogenesis and functions of bacterial S-layers. Nat Rev Microbiol 12(3):211–222PubMedCrossRefGoogle Scholar
  44. Fay A, Dworkin J (2009) Bacillus subtilis homologs of MviN (MurJ), the putative Escherichia coli lipid II flippase, are not essential for growth. J Bacteriol 191(19):6020–6028PubMedCentralPubMedCrossRefGoogle Scholar
  45. Ferbitz L et al (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431(7008):590–596PubMedCrossRefGoogle Scholar
  46. Fischer W (1988) Physiology of lipoteichoic acids in bacteria. Adv Microb Physiol 29:233–302PubMedCrossRefGoogle Scholar
  47. Fischer W (1994) Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus. Med Microbiol Immunol 183(2):61–76PubMedCrossRefGoogle Scholar
  48. Focia PJ et al (2004) Heterodimeric GTPase core of the SRP targeting complex. Science 303(5656):373–377PubMedCentralPubMedCrossRefGoogle Scholar
  49. Freinkman E et al (2012) Regulated assembly of the transenvelope protein complex required for lipopolysaccharide export. Biochemistry 51(24):4800–4806PubMedCentralPubMedCrossRefGoogle Scholar
  50. Frobel J, Rose P, Muller M (2011) Early contacts between substrate proteins and TatA translocase component in twin-arginine translocation. J Biol Chem 286(51):43679–43689PubMedCentralPubMedCrossRefGoogle Scholar
  51. Frobel J et al (2012) Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB. Nat Commun 3:1311PubMedCentralPubMedCrossRefGoogle Scholar
  52. Ganfield MC, Pieringer RA (1980) The biosynthesis of nascent membrane lipoteichoic acid of Streptococcus faecium (S. faecalis ATCC 9790) from phosphatidylkojibiosyl diacylglycerol and phosphatidylglycerol. J Biol Chem 255(11):5164–5169PubMedGoogle Scholar
  53. Glauner B, Holtje JV, Schwarz U (1988) The composition of the murein of Escherichia coli. J Biol Chem 263(21):10088–10095PubMedGoogle Scholar
  54. Goemans C, Denoncin K, Collet JF (2014) Folding mechanisms of periplasmic proteins. Biochim Biophys Acta 1843(8):1517–1528PubMedCrossRefGoogle Scholar
  55. Goffin C, Ghuysen JM (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62(4):1079–1093PubMedCentralPubMedGoogle Scholar
  56. Goosens VJ, Monteferrante CG, van Dijl JM (2014) The Tat system of Gram-positive bacteria. Biochim Biophys Acta 1843(8):1698–1706PubMedCrossRefGoogle Scholar
  57. Graumann PL (2009) Dynamics of bacterial cytoskeletal elements. Cell Motil Cytoskeleton 66(11):909–914PubMedCrossRefGoogle Scholar
  58. Grundling A, Schneewind O (2007a) Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J Bacteriol 189(6):2521–2530PubMedCentralPubMedCrossRefGoogle Scholar
  59. Grundling A, Schneewind O (2007b) Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci U S A 104(20):8478–8483PubMedCentralPubMedCrossRefGoogle Scholar
  60. Hagan CL, Kim S, Kahne D (2010) Reconstitution of outer membrane protein assembly from purified components. Science 328(5980):890–892PubMedCentralPubMedCrossRefGoogle Scholar
  61. Hagan CL, Silhavy TJ, Kahne D (2011) beta-Barrel membrane protein assembly by the Bam complex. Annu Rev Biochem 80:189–210PubMedCrossRefGoogle Scholar
  62. Haiko J, Westerlund-Wikstrom B (2013) The role of the bacterial flagellum in adhesion and virulence. Biology (Basel) 2(4):1242–1267Google Scholar
  63. Han W et al (2012) Defining function of lipopolysaccharide O-antigen ligase WaaL using chemoenzymatically synthesized substrates. J Biol Chem 287(8):5357–5365PubMedCentralPubMedCrossRefGoogle Scholar
  64. Hancock IC (1997) Bacterial cell surface carbohydrates: structure and assembly. Biochem Soc Trans 25(1):183–187PubMedCrossRefGoogle Scholar
  65. Harold FM (1972) Conservation and transformation of energy by bacterial membranes. Bacteriol Rev 36(2):172–230PubMedCentralPubMedGoogle Scholar
  66. Harshey RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273PubMedCrossRefGoogle Scholar
  67. Hatahet F, Boyd D, Beckwith J (2014) Disulfide bond formation in prokaryotes: history, diversity and design. Biochim Biophys Acta 1844(8):1402–1414PubMedCentralPubMedCrossRefGoogle Scholar
  68. Henriques AO et al (1998) Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol Microbiol 28(2):235–247PubMedCrossRefGoogle Scholar
  69. Holst O (2007) The structures of core regions from enterobacterial lipopolysaccharides – an update. FEMS Microbiol Lett 271(1):3–11PubMedCrossRefGoogle Scholar
  70. Holtje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62(1):181–203PubMedCentralPubMedGoogle Scholar
  71. Hutchings MI et al (2009) Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold ‘em, knowing when to fold ‘em. Trends Microbiol 17(1):13–21PubMedCrossRefGoogle Scholar
  72. Hvorup RN et al (2003) The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur J Biochem 270(5):799–813PubMedCrossRefGoogle Scholar
  73. Islam ST et al (2013) Proton-dependent gating and proton uptake by Wzx support O-antigen-subunit antiport across the bacterial inner membrane. MBio 4(5):e00678-13PubMedCentralPubMedCrossRefGoogle Scholar
  74. Iwasaki H, Shimada A, Ito E (1986) Comparative studies of lipoteichoic acids from several Bacillus strains. J Bacteriol 167(2):508–516PubMedCentralPubMedGoogle Scholar
  75. Iwasaki H et al (1989) Structure and glycosylation of lipoteichoic acids in Bacillus strains. J Bacteriol 171(1):424–429PubMedCentralPubMedGoogle Scholar
  76. Jordan S, Hutchings MI, Mascher T (2008) Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 32(1):107–146PubMedCrossRefGoogle Scholar
  77. Kadokura H, Beckwith J (2010) Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Signal 13(8):1231–1246PubMedCentralPubMedCrossRefGoogle Scholar
  78. Kamio Y, Nikaido H (1976) Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the external medium. Biochemistry 15(12):2561–2570PubMedCrossRefGoogle Scholar
  79. Karatsa-Dodgson M, Wormann ME, Grundling A (2010) In vitro analysis of the Staphylococcus aureus lipoteichoic acid synthase enzyme using fluorescently labeled lipids. J Bacteriol 192(20):5341–5349PubMedCentralPubMedCrossRefGoogle Scholar
  80. Kawai Y et al (2011) A widespread family of bacterial cell wall assembly proteins. EMBO J 30(24):4931–4941PubMedCentralPubMedCrossRefGoogle Scholar
  81. Khattar MM, Begg KJ, Donachie WD (1994) Identification of FtsW and characterization of a new ftsW division mutant of Escherichia coli. J Bacteriol 176(23):7140–7147PubMedCentralPubMedGoogle Scholar
  82. Kim S et al (2007) Structure and function of an essential component of the outer membrane protein assembly machine. Science 317(5840):961–964PubMedCrossRefGoogle Scholar
  83. King G, Sharom FJ (2012) Proteins that bind and move lipids: MsbA and NPC1. Crit Rev Biochem Mol Biol 47(1):75–95PubMedCrossRefGoogle Scholar
  84. Koch HG, Muller M (2000) Dissecting the translocase and integrase functions of the Escherichia coli SecYEG translocon. J Cell Biol 150(3):689–694PubMedCentralPubMedCrossRefGoogle Scholar
  85. Koch HU, Haas R, Fischer W (1984) The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus. Eur J Biochem 138(2):357–363PubMedCrossRefGoogle Scholar
  86. Kojima N, Araki Y, Ito E (1985) Structure of the linkage units between ribitol teichoic acids and peptidoglycan. J Bacteriol 161(1):299–306PubMedCentralPubMedGoogle Scholar
  87. Kouidmi I, Levesque RC, Paradis-Bleau C (2014) The biology of Mur ligases as an antibacterial target. Mol Microbiol 94(2):242–253PubMedCrossRefGoogle Scholar
  88. Kovacs M et al (2006) A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188(16):5797–5805PubMedCentralPubMedCrossRefGoogle Scholar
  89. Kunst F et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256PubMedCrossRefGoogle Scholar
  90. Lara B et al (2005) Peptidoglycan precursor pools associated with MraY and FtsW deficiencies or antibiotic treatments. FEMS Microbiol Lett 250(2):195–200PubMedCrossRefGoogle Scholar
  91. Lazarevic V, Karamata D (1995) The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol Microbiol 16(2):345–355PubMedCrossRefGoogle Scholar
  92. Lecoq L et al (2012) Dynamics induced by beta-lactam antibiotics in the active site of Bacillus subtilis L,D-transpeptidase. Structure 20(5):850–861PubMedCrossRefGoogle Scholar
  93. Li J, Lee DS, Madrenas J (2013) Evolving bacterial envelopes and plasticity of TLR2-dependent responses: basic research and translational opportunities. Front Immunol 4:347PubMedCentralPubMedGoogle Scholar
  94. Lovering AL, Safadi SS, Strynadka NC (2012) Structural perspective of peptidoglycan biosynthesis and assembly. Annu Rev Biochem 81:451–478PubMedCrossRefGoogle Scholar
  95. Lu D et al (2009) Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS. Proc Natl Acad Sci U S A 106(5):1584–1589PubMedCentralPubMedCrossRefGoogle Scholar
  96. Lugtenberg EJ, Peters R (1976) Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. Biochim Biophys Acta 441(1):38–47PubMedCrossRefGoogle Scholar
  97. Lupoli TJ et al (2014) Lipoprotein activators stimulate Escherichia coli penicillin-binding proteins by different mechanisms. J Am Chem Soc 136(1):52–55PubMedCentralPubMedCrossRefGoogle Scholar
  98. Lycklama ANJA, Driessen AJ (2012) The bacterial Sec-translocase: structure and mechanism. Philos Trans R Soc Lond B Biol Sci 367(1592):1016–1028CrossRefGoogle Scholar
  99. Magnet S et al (2007a) Identification of the L,D-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. J Bacteriol 189(10):3927–3931PubMedCentralPubMedCrossRefGoogle Scholar
  100. Magnet S et al (2007b) Specificity of L,D-transpeptidases from gram-positive bacteria producing different peptidoglycan chemotypes. J Biol Chem 282(18):13151–13159PubMedCrossRefGoogle Scholar
  101. Magnet S et al (2008) Identification of the L,D-transpeptidases for peptidoglycan cross-linking in Escherichia coli. J Bacteriol 190(13):4782–4785PubMedCentralPubMedCrossRefGoogle Scholar
  102. Mainardi JL et al (2000) Novel mechanism of beta-lactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium. J Biol Chem 275(22):16490–16496PubMedCrossRefGoogle Scholar
  103. Mainardi JL et al (2005) A novel peptidoglycan cross-linking enzyme for a beta-lactam-resistant transpeptidation pathway. J Biol Chem 280(46):38146–38152PubMedCrossRefGoogle Scholar
  104. Mainardi JL et al (2008) Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. FEMS Microbiol Rev 32(2):386–408PubMedCrossRefGoogle Scholar
  105. Maloney PC, Kashket ER, Wilson TH (1974) A protonmotive force drives ATP synthesis in bacteria. Proc Natl Acad Sci U S A 71(10):3896–3900PubMedCentralPubMedCrossRefGoogle Scholar
  106. Manat G et al (2014) Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier. Microb Drug Resist 20(3):199–214PubMedCentralPubMedCrossRefGoogle Scholar
  107. Mancuso DJ, Chiu TH (1982) Biosynthesis of glucosyl monophosphoryl undecaprenol and its role in lipoteichoic acid biosynthesis. J Bacteriol 152(2):616–625PubMedCentralPubMedGoogle Scholar
  108. Margolin W (2009) Sculpting the bacterial cell. Curr Biol 19(17):R812–R822PubMedCentralPubMedCrossRefGoogle Scholar
  109. Matias VR, Beveridge TJ (2008) Lipoteichoic acid is a major component of the Bacillus subtilis periplasm. J Bacteriol 190(22):7414–7418PubMedCentralPubMedCrossRefGoogle Scholar
  110. McPherson DC, Popham DL (2003) Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis. J Bacteriol 185(4):1423–1431PubMedCentralPubMedCrossRefGoogle Scholar
  111. Merdanovic M et al (2011) Protein quality control in the bacterial periplasm. Annu Rev Microbiol 65:149–168PubMedCrossRefGoogle Scholar
  112. Millman JS et al (2001) FtsY binds to the Escherichia coli inner membrane via interactions with phosphatidylethanolamine and membrane proteins. J Biol Chem 276(28):25982–25989PubMedCrossRefGoogle Scholar
  113. Mohamed YF, Valvano MA (2014) A Burkholderia cenocepacia MurJ (MviN) homolog is essential for cell wall peptidoglycan synthesis and bacterial viability. Glycobiology 24(6):564–576PubMedCentralPubMedCrossRefGoogle Scholar
  114. Mohammadi T et al (2011) Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J 30(8):1425–1432PubMedCentralPubMedCrossRefGoogle Scholar
  115. Mohammadi T et al (2014) Specificity of the transport of lipid II by FtsW in Escherichia coli. J Biol Chem 289(21):14707–14718PubMedCentralPubMedCrossRefGoogle Scholar
  116. Muhlradt PF, Golecki JR (1975) Asymmetrical distribution and artifactual reorientation of lipopolysaccharide in the outer membrane bilayer of Salmonella typhimurium. Eur J Biochem 51(2):343–352PubMedCrossRefGoogle Scholar
  117. Mullineaux CW et al (2006) Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J Bacteriol 188(10):3442–3448PubMedCentralPubMedCrossRefGoogle Scholar
  118. Nakayama H, Kurokawa K, Lee BL (2012) Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J 279(23):4247–4268PubMedCrossRefGoogle Scholar
  119. Narita S, Tokuda H (2010) Sorting of bacterial lipoproteins to the outer membrane by the Lol system. Methods Mol Biol 619:117–129PubMedCrossRefGoogle Scholar
  120. Natale P, Bruser T, Driessen AJ (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. Biochim Biophys Acta 1778(9):1735–1756PubMedCrossRefGoogle Scholar
  121. Nelson N (1994) Energizing porters by proton-motive force. J Exp Biol 196:7–13PubMedGoogle Scholar
  122. Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 67(4):686–723PubMedCentralPubMedCrossRefGoogle Scholar
  123. Nikaido H (1989) Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother 33(11):1831–1836PubMedCentralPubMedCrossRefGoogle Scholar
  124. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656PubMedCentralPubMedCrossRefGoogle Scholar
  125. Okuda S, Tokuda H (2011) Lipoprotein sorting in bacteria. Annu Rev Microbiol 65:239–259PubMedCrossRefGoogle Scholar
  126. Okuda S, Freinkman E, Kahne D (2012) Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. Science 338(6111):1214–1217PubMedCentralPubMedCrossRefGoogle Scholar
  127. Oliver DB (1996) Periplasm. ASM Press, WashingtonGoogle Scholar
  128. Over B et al (2011) LytR-CpsA-Psr proteins in Staphylococcus aureus display partial functional redundancy and the deletion of all three severely impairs septum placement and cell separation. FEMS Microbiol Lett 320(2):142–151PubMedCrossRefGoogle Scholar
  129. Paetzel M et al (2002) Signal peptidases. Chem Rev 102(12):4549–4580PubMedCrossRefGoogle Scholar
  130. Pailler J et al (2012) Phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt) of Escherichia coli has seven transmembrane segments, and its essential residues are embedded in the membrane. J Bacteriol 194(9):2142–2151PubMedCentralPubMedCrossRefGoogle Scholar
  131. Pallen MJ, Chaudhuri RR, Henderson IR (2003) Genomic analysis of secretion systems. Curr Opin Microbiol 6(5):519–527PubMedCrossRefGoogle Scholar
  132. Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10(7):483–496PubMedGoogle Scholar
  133. Palmer T, Sargent F, Berks BC (2010) The Tat protein export pathway. In the Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, WashingtonGoogle Scholar
  134. Paradis-Bleau C et al (2010) Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143(7):1110–1120PubMedCentralPubMedCrossRefGoogle Scholar
  135. Percy MG, Grundling A (2014) Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol 68:81–100PubMedCrossRefGoogle Scholar
  136. Perego M et al (1995) Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J Biol Chem 270(26):15598–15606PubMedCrossRefGoogle Scholar
  137. Perlstein DL et al (2007) The direction of glycan chain elongation by peptidoglycan glycosyltransferases. J Am Chem Soc 129(42):12674–12675PubMedCentralPubMedCrossRefGoogle Scholar
  138. Piddock LJ (2006) Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4(8):629–636PubMedCrossRefGoogle Scholar
  139. Pisabarro AG, de Pedro MA, Vazquez D (1985) Structural modifications in the peptidoglycan of Escherichia coli associated with changes in the state of growth of the culture. J Bacteriol 161(1):238–242PubMedCentralPubMedGoogle Scholar
  140. Polissi A, Sperandeo P (2014) The lipopolysaccharide export pathway in Escherichia coli: structure, organization and regulated assembly of the Lpt machinery. Mar Drugs 12(2):1023–1042PubMedCentralPubMedCrossRefGoogle Scholar
  141. Raetz CR (1978) Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol Rev 42(3):614–659PubMedCentralPubMedGoogle Scholar
  142. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700PubMedCentralPubMedCrossRefGoogle Scholar
  143. Raetz CR et al (2007) Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76:295–329PubMedCentralPubMedCrossRefGoogle Scholar
  144. Raivio TL (2005) Envelope stress responses and Gram-negative bacterial pathogenesis. Mol Microbiol 56(5):1119–1128PubMedCrossRefGoogle Scholar
  145. Ramos HC, Rumbo M, Sirard JC (2004) Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 12(11):509–517PubMedCrossRefGoogle Scholar
  146. Reeves PR et al (1996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4(12):495–503PubMedCrossRefGoogle Scholar
  147. Reichmann NT, Grundling A (2011) Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes. FEMS Microbiol Lett 319(2):97–105PubMedCentralPubMedCrossRefGoogle Scholar
  148. Ricci DP, Silhavy TJ (2012) The Bam machine: a molecular cooper. Biochim Biophys Acta 1818(4):1067–1084PubMedCentralPubMedCrossRefGoogle Scholar
  149. Rizzitello AE, Harper JR, Silhavy TJ (2001) Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli. J Bacteriol 183(23):6794–6800PubMedCentralPubMedCrossRefGoogle Scholar
  150. Robichon C, Vidal-Ingigliardi D, Pugsley AP (2005) Depletion of apolipoprotein N-acyltransferase causes mislocalization of outer membrane lipoproteins in Escherichia coli. J Biol Chem 280(2):974–983PubMedCrossRefGoogle Scholar
  151. Royet J, Dziarski R (2007) Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat Rev Microbiol 5(4):264–277PubMedCrossRefGoogle Scholar
  152. Ruiz N (2008) Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc Natl Acad Sci U S A 105(40):15553–15557PubMedCentralPubMedCrossRefGoogle Scholar
  153. Ruiz N (2009) Streptococcus pyogenes YtgP (Spy_0390) complements Escherichia coli strains depleted of the putative peptidoglycan flippase MurJ. Antimicrob Agents Chemother 53(8):3604–3605PubMedCentralPubMedCrossRefGoogle Scholar
  154. Ruiz N, Kahne D, Silhavy TJ (2009) Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat Rev Microbiol 7(9):677–683PubMedCentralPubMedCrossRefGoogle Scholar
  155. Samuelson JC et al (2000) YidC mediates membrane protein insertion in bacteria. Nature 406(6796):637–641PubMedCrossRefGoogle Scholar
  156. Sankaran K, Wu HC (1994) Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem 269(31):19701–19706PubMedGoogle Scholar
  157. Sanyal S, Menon AK (2009) Flipping lipids: why an’ what’s the reason for? ACS Chem Biol 4(11):895–909PubMedCentralPubMedCrossRefGoogle Scholar
  158. Sarvas M et al (2004) Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochim Biophys Acta 1694(1–3):311–327PubMedGoogle Scholar
  159. Sauvage E et al (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32(2):234–258PubMedCrossRefGoogle Scholar
  160. Schirner K et al (2009) Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J 28(7):830–842PubMedCentralPubMedCrossRefGoogle Scholar
  161. Schirner K, Stone LK, Walker S (2011) ABC transporters required for export of wall teichoic acids do not discriminate between different main chain polymers. ACS Chem Biol 6(5):407–412PubMedCentralPubMedCrossRefGoogle Scholar
  162. Schneewind O, Missiakas DM (2012) Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci 367(1592):1123–1139PubMedCentralPubMedCrossRefGoogle Scholar
  163. Schneewind O, Missiakas D (2014) Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J Bacteriol 196(6):1133–1142PubMedCentralPubMedCrossRefGoogle Scholar
  164. Schneewind O, Model P, Fischetti VA (1992) Sorting of protein A to the staphylococcal cell wall. Cell 70(2):267–281PubMedCrossRefGoogle Scholar
  165. Sewell EW, Brown ED (2014) Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics. J Antibiot (Tokyo) 67(1):43–51CrossRefGoogle Scholar
  166. Sham LT, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N (2014) Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345(6193):220–222PubMedCentralPubMedCrossRefGoogle Scholar
  167. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414PubMedCentralPubMedCrossRefGoogle Scholar
  168. Sklar JG et al (2007) Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev 21(19):2473–2484PubMedCentralPubMedCrossRefGoogle Scholar
  169. Sperandeo P et al (2008) Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J Bacteriol 190(13):4460–4469PubMedCentralPubMedCrossRefGoogle Scholar
  170. Sperandeo P, Deho G, Polissi A (2009) The lipopolysaccharide transport system of Gram-negative bacteria. Biochim Biophys Acta 1791(7):594–602PubMedCrossRefGoogle Scholar
  171. Sperandeo P et al (2011) New insights into the Lpt machinery for lipopolysaccharide transport to the cell surface: LptA–LptC interaction and LptA stability as sensors of a properly assembled transenvelope complex. J Bacteriol 193(5):1042–1053PubMedCentralPubMedCrossRefGoogle Scholar
  172. Spirig T, Weiner EM, Clubb RT (2011) Sortase enzymes in Gram-positive bacteria. Mol Microbiol 82(5):1044–1059PubMedCentralPubMedCrossRefGoogle Scholar
  173. Spratt BG, Pardee AB (1975) Penicillin-binding proteins and cell shape in E. coli. Nature 254(5500):516–517PubMedCrossRefGoogle Scholar
  174. Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18(10):464–470PubMedCrossRefGoogle Scholar
  175. Sutcliffe IC (2011) Priming and elongation: dissection of the lipoteichoic acid biosynthetic pathway in Gram-positive bacteria. Mol Microbiol 79(3):553–556PubMedCrossRefGoogle Scholar
  176. Swoboda JG et al (2010) Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 11(1):35–45PubMedCentralPubMedCrossRefGoogle Scholar
  177. Taron DJ, Childs WC 3rd, Neuhaus FC (1983) Biosynthesis of D-alanyl-lipoteichoic acid: role of diglyceride kinase in the synthesis of phosphatidylglycerol for chain elongation. J Bacteriol 154(3):1110–1116PubMedCentralPubMedGoogle Scholar
  178. Taylor BL (1983) Role of proton motive force in sensory transduction in bacteria. Annu Rev Microbiol 37:551–573PubMedCrossRefGoogle Scholar
  179. Thanassi JA et al (2002) Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res 30(14):3152–3162PubMedCentralPubMedCrossRefGoogle Scholar
  180. Thanassi DG, Bliska JB, Christie PJ (2012) Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 36(6):1046–1082PubMedCentralPubMedCrossRefGoogle Scholar
  181. Trent MS et al (2006) Diversity of endotoxin and its impact on pathogenesis. J Endotoxin Res 12(4):205–223PubMedCrossRefGoogle Scholar
  182. Typas A et al (2010) Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143(7):1097–1109PubMedCentralPubMedCrossRefGoogle Scholar
  183. Typas A et al (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10(2):123–136Google Scholar
  184. Ulbrandt ND, Newitt JA, Bernstein HD (1997) The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88(2):187–196PubMedCrossRefGoogle Scholar
  185. Utsumi R (2008) Bacterial signal transduction: networks and drug targets. Preface. Adv Exp Med Biol 631:vGoogle Scholar
  186. Valvano MA (2008) Undecaprenyl phosphate recycling comes out of age. Mol Microbiol 67(2):232–235PubMedCrossRefGoogle Scholar
  187. van der Does C et al (2000) Non-bilayer lipids stimulate the activity of the reconstituted bacterial protein translocase. J Biol Chem 275(4):2472–2478PubMedCrossRefGoogle Scholar
  188. van der Sluis EO, Driessen AJ (2006) Stepwise evolution of the Sec machinery in Proteobacteria. Trends Microbiol 14(3):105–108PubMedCrossRefGoogle Scholar
  189. van Wely KH et al (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25(4):437–454PubMedCrossRefGoogle Scholar
  190. Villa R et al (2013) The Escherichia coli Lpt transenvelope protein complex for lipopolysaccharide export is assembled via conserved structurally homologous domains. J Bacteriol 195(5):1100–1108PubMedCentralPubMedCrossRefGoogle Scholar
  191. Visweswaran GR, Dijkstra BW, Kok J (2011) Murein and pseudomurein cell wall binding domains of bacteria and archaea—a comparative view. Appl Microbiol Biotechnol 92(5):921–928PubMedCentralPubMedCrossRefGoogle Scholar
  192. Vollmer W, Blanot D, de Pedro MA (2008a) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32(2):149–167PubMedCrossRefGoogle Scholar
  193. Vollmer W et al (2008b) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32(2):259–286PubMedCrossRefGoogle Scholar
  194. Weiner JH, Li L (2008) Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis. Biochim Biophys Acta 1778(9):1698–1713PubMedCrossRefGoogle Scholar
  195. Welte T et al (2012) Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol Biol Cell 23(3):464–479PubMedCentralPubMedCrossRefGoogle Scholar
  196. Whitfield C (1995) Biosynthesis of lipopolysaccharide O antigens. Trends Microbiol 3(5):178–185PubMedCrossRefGoogle Scholar
  197. Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68PubMedCrossRefGoogle Scholar
  198. Wimley WC (2003) The versatile beta-barrel membrane protein. Curr Opin Struct Biol 13(4):404–411PubMedCrossRefGoogle Scholar
  199. Wooldridge K (2009) Bacterial secreted proteins: secretory mechanisms and role in pathogenesis, vol xii. Caister Academic Press, Wymondham, p 511Google Scholar
  200. Xia G, Peschel A (2008) Toward the pathway of S. aureus WTA biosynthesis. Chem Biol 15(2):95–96PubMedCrossRefGoogle Scholar
  201. Xia G et al (2010) Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM. J Biol Chem 285(18):13405–13415PubMedCentralPubMedCrossRefGoogle Scholar
  202. Yakushi T et al (2000) A new ABC transporter mediating the detachment of lipid-modified proteins from membranes. Nat Cell Biol 2(4):212–218PubMedCrossRefGoogle Scholar
  203. Yokoyama K, Araki Y, Ito E (1988) The function of galactosyl phosphorylpolyprenol in biosynthesis of lipoteichoic acid in Bacillus coagulans. Eur J Biochem 173(2):453–458PubMedCrossRefGoogle Scholar
  204. Young KD (2010) New ways to make old walls: bacterial surprises. Cell 143(7):1042–1044PubMedCrossRefGoogle Scholar
  205. Young KD (2014) Microbiology. A flipping cell wall ferry. Science 345(6193):139–140PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Microbiology, Infectiology and ImmunologyUniversité de MontréalMontrealCanada

Personalised recommendations