Advertisement

Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes

  • Ana Popovic
  • Anatoly Tchigvintsev
  • Hai Tran
  • Tatyana N. Chernikova
  • Olga V. Golyshina
  • Michail M. Yakimov
  • Peter N. Golyshin
  • Alexander F. Yakunin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 883)

Abstract

This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

Keywords

Metagenome Gene library Gene discovery Enzyme screening Hydrolase 

Notes

Acknowledgments

This work was supported in part by the Government of Canada through Genome Canada and the Ontario Genomics Institute (2009-OGI-ABC-1405 and the research agreement OGI-055), Ontario Research Fund (ORF-GL2-01-004), the EU FP7 project MAMBA (FP7-KBBE-2008-226977) and MicroB3 (OCEAN-2011-287589). We thank all members of the Structural Proteomics in Toronto (SPiT) Centre for help in conducting the experiments and Dr. Manuel Ferrer (Institute of Catalysis, Madrid) for helpful discussions.

References

  1. Aly AS, Moustafa AB, Hebeish A (2004) Bio-technological treatment of cellulosic textiles. J Clean Prod 12(7):697–705CrossRefGoogle Scholar
  2. Baraniecki CA, Aislabie J, Foght JM (2002) Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 43(1):44–54CrossRefPubMedGoogle Scholar
  3. Bedingfield J (ed) (2013) The Novozymes Report. Novozymes. http://report2013.novozymes.com Accessed 24 Feb 2014
  4. Beja O et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289(5486):1902–1906CrossRefPubMedGoogle Scholar
  5. Beloqui A et al (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 281(32):22933–22942CrossRefPubMedGoogle Scholar
  6. Brisson VL et al (2012) Metagenomic analysis of a stable trichloroethene-degrading microbial community. ISME J 6(9):1702–1714PubMedCentralCrossRefPubMedGoogle Scholar
  7. Cavicchioli R et al (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13(3):253–261CrossRefPubMedGoogle Scholar
  8. Christian JH, Waltho JA (1961) The sodium and potassium content of non-halophilic bacteria in relation to salt tolerance. J Gen Microbiol 25:97–102CrossRefPubMedGoogle Scholar
  9. Christian JH, Waltho JA (1962) Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta 65:506–508CrossRefPubMedGoogle Scholar
  10. Dinsdale EA et al (2008) Functional metagenomic profiling of nine biomes. Nature 452(7187):629–632CrossRefPubMedGoogle Scholar
  11. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200–208CrossRefPubMedGoogle Scholar
  12. Ferrer M, Martínez-Abarca F, Golyshin PN (2005) Mining genomes and “metagenomes” for novel catalysts. Curr Opin Biotechnol 16(6):588–593CrossRefPubMedGoogle Scholar
  13. Ferrer M et al (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10(3):207–214CrossRefPubMedGoogle Scholar
  14. Ferrer M et al (2009) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 16(1–2):109–123CrossRefPubMedGoogle Scholar
  15. Fredrickson JK et al (1991) Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. Appl Environ Microbiol 57(3):796–803PubMedCentralPubMedGoogle Scholar
  16. Fredrickson JK et al (1995) Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 61(5):1917–1922PubMedCentralPubMedGoogle Scholar
  17. Gabor EM, Alkema WBL, Janssen DB (2004) Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ Microbiol 6(9):879–886CrossRefPubMedGoogle Scholar
  18. Gado HM et al (2009) Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk production and composition in dairy cows. Anim Feed Sci Technol 154(1–2):36–46CrossRefGoogle Scholar
  19. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63CrossRefPubMedGoogle Scholar
  20. Hausmann S, Jaeger EK (2010) Lipolytic enzymes from bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1100–1126Google Scholar
  21. Hemachander C, Puvanakrishnan R (2000) Lipase from Ralstonia pickettii as an additive in laundry detergent formulations. Process Biochem 35(8):809–814CrossRefGoogle Scholar
  22. Hernández-Martín E, Otero C (2008) Different enzyme requirements for the synthesis of biodiesel: Novozym 435 and Lipozyme TL IM. Bioresour Technol 99(2):277–286CrossRefPubMedGoogle Scholar
  23. Holloway P, Trevors JT, Lee H (1998) A colorimetric assay for detecting haloalkane dehalogenase activity. J Microbiol Methods 32(1):31–36CrossRefGoogle Scholar
  24. Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production – a literature review. J Clean Prod 42:228–240CrossRefGoogle Scholar
  25. Jimenez L et al (1999) Biobleaching of cellulose pulp from wheat straw with enzymes and hydrogen peroxide. Process Biochem 35:149–157CrossRefGoogle Scholar
  26. Jones BV, Sun F, Marchesi JR (2007) Using skimmed milk agar to functionally screen a gut metagenomic library for proteases may lead to false positives. Lett Appl Microbiol 45(4):418–420CrossRefPubMedGoogle Scholar
  27. Kemp PF, Aller JY (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47(2):161–177CrossRefPubMedGoogle Scholar
  28. Kok RG et al (1993) Growth-phase-dependent expression of the lipolytic system of Acinetobacter calcoaceticus BD413: cloning of a gene encoding one of the esterases. J Gen Microbiol 139:2329–2342CrossRefPubMedGoogle Scholar
  29. Koonin EV, Galperin MY (2003) Sequence - evolution - function: computational approaches in comparative genomics. Kluwer Academic, BostonCrossRefGoogle Scholar
  30. Kouker G, Jaeger KE (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53(1):211–213PubMedCentralPubMedGoogle Scholar
  31. Kwon KK et al (2005) Kordiimonas gwangyangensis gen. nov., sp. nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage (Kordiimonadales ord. nov.) in the “Alphaproteobacteria”. Int J Syst Evol Microbiol 55(Pt 5):2033–2037CrossRefPubMedGoogle Scholar
  32. Li Y et al (2005) Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes. Environ Microbiol 7(12):1927–1936CrossRefPubMedGoogle Scholar
  33. Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543(1):1–10CrossRefPubMedGoogle Scholar
  34. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3(June):510–516CrossRefPubMedGoogle Scholar
  35. Martinez A et al (2004) Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 70(4):2452–2463PubMedCentralCrossRefPubMedGoogle Scholar
  36. Maymo-Gatell X et al (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276(5318):1568–1571CrossRefPubMedGoogle Scholar
  37. Monsan P, Donohue MJO (2010) Industrial biotechnology in the food and feed sector. In: Soetaert W, Vandamme EJ (eds) Industrial biotechnology: sustainable growth and economic success. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 350Google Scholar
  38. Nguyen D et al (2008) Bleaching of kraft pulp by a commercial lipase: accessory enzymes degrade hexenuronic acids. Enzyme Microb Technol 43(2):130–136CrossRefGoogle Scholar
  39. Okamura-Matsui T et al (2003) Discovery of alcohol dehydrogenase from mushrooms and application to alcoholic beverages. J Mol Catal B: Enzym 23(2–6):133–144CrossRefGoogle Scholar
  40. Olufsen M et al (2005) Increased flexibility as a strategy for cold adaptation: a comparative molecular dynamics study of cold- and warm-active uracil DNA glycosylase. J Biol Chem 280(18):18042–18048CrossRefPubMedGoogle Scholar
  41. Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  42. Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010) Uses of Laccases in the Food Industry. Enzyme Research 2010:918761. doi: 10.4061/2010/918761Google Scholar
  43. Pelletier E et al (2008) “Candidatus Cloacamonas Acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 190(7):2572–2579PubMedCentralCrossRefPubMedGoogle Scholar
  44. Prasad S, Khadatare PB, Roy I (2011) Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Appl Environ Microbiol 77(13):4603–4609PubMedCentralCrossRefPubMedGoogle Scholar
  45. Ravenschlag K et al (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65(9):3982–3989PubMedCentralPubMedGoogle Scholar
  46. Robertson DE et al (2004) Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol 70(4):2429–2436PubMedCentralCrossRefPubMedGoogle Scholar
  47. Roesch LFW et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290PubMedCentralPubMedGoogle Scholar
  48. Rondon MR et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66(6):2541–2547PubMedCentralCrossRefPubMedGoogle Scholar
  49. Saeki K et al (2007) Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J Biosci Bioeng 103(6):501–508CrossRefPubMedGoogle Scholar
  50. Schleheck D et al (2000) An α-proteobacterium converts linear alkylbenzenesulfonate surfactants into sulfophenylcarboxylates and linear alkyldiphenyletherdisulfonate surfactants into sulfodiphenylethercarboxylates. Appl Environ Microbiol 66(5):1911–1916PubMedCentralCrossRefPubMedGoogle Scholar
  51. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506PubMedCentralCrossRefPubMedGoogle Scholar
  52. Sellek GA, Chaudhuri JB (1999) Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb Technol 25(6):471–482CrossRefGoogle Scholar
  53. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433CrossRefPubMedGoogle Scholar
  54. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77(4):1153–1161PubMedCentralCrossRefPubMedGoogle Scholar
  55. Staskawicz B et al (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169(12):5789–5794PubMedCentralPubMedGoogle Scholar
  56. Steele HL et al (2009) Advances in recovery of novel biocatalysts from metagenomes. J Mol Microbiol Biotechnol 16(1–2):25–37CrossRefPubMedGoogle Scholar
  57. Taupp M, Mewis K, Hallam SJ (2011) The art and design of functional metagenomic screens. Curr Opin Biotechnol 22(3):465–472CrossRefPubMedGoogle Scholar
  58. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43(4):777–780PubMedCentralPubMedGoogle Scholar
  59. Troeschel SC et al (2012) Novel broad host range shuttle vectors for expression in Escherichia coli, Bacillus subtilis and Pseudomonas putida. J Biotechnol 161(2):71–79CrossRefPubMedGoogle Scholar
  60. Uchiyama T, Miyazaki K (2009) Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 20(6):616–622CrossRefPubMedGoogle Scholar
  61. Van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6(3):213–218CrossRefPubMedGoogle Scholar
  62. Venter JC et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74CrossRefPubMedGoogle Scholar
  63. Wang Q et al (2006) Discrimination of esterase and peptidase activities of acylaminoacyl peptidase from hyperthermophilic Aeropyrum pernix K1 by a single mutation. J Biol Chem 281(27):18618–18625CrossRefPubMedGoogle Scholar
  64. Wang S et al (2013) Isolation and characterization of a novel organic solvent-tolerant and halotolerant esterase from a soil metagenomic library. J Mol Catal B: Enzym 95:1–8CrossRefGoogle Scholar
  65. Wexler M et al (2005) A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environ Microbiol 7(12):1917–1926CrossRefPubMedGoogle Scholar
  66. Williams AB, Rona PA (1986) Two new caridean shrimps (Bresiliidae) from a hydrothermal field on the Mid-Atlantic Ridge. J Crustac Biol 6(3):446–462CrossRefGoogle Scholar
  67. Yooseph S et al (2007) The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol 5(3):e16PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ana Popovic
    • 1
  • Anatoly Tchigvintsev
    • 1
  • Hai Tran
    • 2
  • Tatyana N. Chernikova
    • 2
  • Olga V. Golyshina
    • 2
  • Michail M. Yakimov
    • 3
  • Peter N. Golyshin
    • 2
  • Alexander F. Yakunin
    • 1
  1. 1.Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada
  2. 2.School of Biological SciencesBangor UniversityGwyneddUK
  3. 3.Institute for Coastal Marine Environment, CNRMessinaItaly

Personalised recommendations